Futuresony commited on
Commit
a500491
Β·
verified Β·
1 Parent(s): 982fc1c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -17
app.py CHANGED
@@ -11,41 +11,71 @@ from huggingface_hub import InferenceClient, hf_hub_download
11
  HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
12
  HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
13
 
14
- client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
 
15
 
16
- def format_alpaca_prompt(user_input, system_prompt):
17
- """Formats input in Alpaca/LLaMA style"""
18
- prompt = f"""{system_prompt}
19
 
20
- ### Instruction:
21
- {user_input}
 
22
 
23
- ### Response:
24
- """
25
- return prompt
 
 
 
 
 
 
 
 
 
26
 
 
 
 
27
  def respond(message, history, system_message, max_tokens, temperature, top_p):
28
- formatted_prompt = format_alpaca_prompt(message, system_message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  response = client.text_generation(
31
- formatted_prompt,
32
  max_new_tokens=max_tokens,
33
  temperature=temperature,
34
  top_p=top_p,
35
  )
36
 
37
- # βœ… Extract only the response
38
  cleaned_response = response.split("### Response:")[-1].strip()
39
-
40
- yield cleaned_response # βœ… Output only the answer
41
 
 
 
 
 
 
42
  demo = gr.ChatInterface(
43
  respond,
44
  additional_inputs=[
45
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
46
  gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
47
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
48
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
49
  ],
50
  )
51
 
 
11
  HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
12
  HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
13
 
14
+ # πŸ”Ή FAISS Index Path
15
+ FAISS_PATH = "asa_faiss.index"
16
 
17
+ # πŸ”Ή Load Sentence Transformer for Embeddings
18
+ embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
 
19
 
20
+ # πŸ”Ή Load FAISS Index from Hugging Face
21
+ faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
22
+ faiss_index = faiss.read_index(faiss_local_path)
23
 
24
+ # πŸ”Ή Initialize Hugging Face Model Client
25
+ client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
26
+
27
+ # πŸ”Ή Retrieve Relevant FAISS Data
28
+ def retrieve_faiss_knowledge(user_query, top_k=3):
29
+ query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
30
+ distances, indices = faiss_index.search(query_embedding, top_k)
31
+
32
+ retrieved_texts = []
33
+ for idx in indices[0]: # Extract top_k results
34
+ if idx != -1: # Ensure valid index
35
+ retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
36
 
37
+ return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
38
+
39
+ # πŸ”Ή Chatbot Response Function (Forcing FAISS Context)
40
  def respond(message, history, system_message, max_tokens, temperature, top_p):
41
+ faiss_context = retrieve_faiss_knowledge(message)
42
+
43
+ # πŸ”₯ Force the model to use FAISS
44
+ full_prompt = f"""### System Instruction:
45
+ You MUST use the provided FAISS data to generate your response.
46
+ If no FAISS data is found, return "I don't have enough information."
47
+
48
+ ### Retrieved FAISS Data:
49
+ {faiss_context}
50
+
51
+ ### User Query:
52
+ {message}
53
+
54
+ ### Response:
55
+ """
56
 
57
  response = client.text_generation(
58
+ full_prompt,
59
  max_new_tokens=max_tokens,
60
  temperature=temperature,
61
  top_p=top_p,
62
  )
63
 
64
+ # βœ… Extract only the model-generated response
65
  cleaned_response = response.split("### Response:")[-1].strip()
 
 
66
 
67
+ history.append((message, cleaned_response)) # βœ… Update chat history
68
+
69
+ yield cleaned_response # βœ… Output the response
70
+
71
+ # πŸ”Ή Gradio Chat Interface
72
  demo = gr.ChatInterface(
73
  respond,
74
  additional_inputs=[
75
+ gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
76
  gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
77
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
78
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
79
  ],
80
  )
81