Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from huggingface_hub import InferenceClient, hf_hub_download
|
|
9 |
|
10 |
# πΉ Hugging Face Credentials
|
11 |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
|
12 |
-
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') #
|
13 |
|
14 |
# πΉ FAISS Index Path
|
15 |
FAISS_PATH = "asa_faiss.index"
|
@@ -24,34 +24,35 @@ faiss_index = faiss.read_index(faiss_local_path)
|
|
24 |
# πΉ Initialize Hugging Face Model Client
|
25 |
client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
|
26 |
|
27 |
-
# πΉ Retrieve Relevant FAISS
|
28 |
-
def
|
29 |
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
|
30 |
distances, indices = faiss_index.search(query_embedding, top_k)
|
31 |
|
32 |
retrieved_texts = []
|
33 |
for idx in indices[0]: # Extract top_k results
|
34 |
if idx != -1: # Ensure valid index
|
35 |
-
retrieved_texts.append(f"Example
|
36 |
|
37 |
-
return "\n".join(retrieved_texts) if retrieved_texts else "No relevant data found
|
38 |
|
39 |
-
# πΉ
|
40 |
-
def
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
f"{user_input}\n\n### Response:"
|
48 |
-
)
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
response = client.text_generation(
|
57 |
full_prompt,
|
@@ -60,18 +61,18 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
60 |
top_p=top_p,
|
61 |
)
|
62 |
|
63 |
-
# β
Extract only model-generated response
|
64 |
cleaned_response = response.split("### Response:")[-1].strip()
|
65 |
-
|
66 |
history.append((message, cleaned_response)) # β
Update chat history
|
67 |
-
|
68 |
yield cleaned_response # β
Output the response
|
69 |
|
70 |
# πΉ Gradio Chat Interface
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
-
gr.Textbox(value="You are a
|
75 |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
77 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|
|
|
9 |
|
10 |
# πΉ Hugging Face Credentials
|
11 |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
|
12 |
+
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment
|
13 |
|
14 |
# πΉ FAISS Index Path
|
15 |
FAISS_PATH = "asa_faiss.index"
|
|
|
24 |
# πΉ Initialize Hugging Face Model Client
|
25 |
client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
|
26 |
|
27 |
+
# πΉ Retrieve Relevant FAISS Data
|
28 |
+
def retrieve_faiss_knowledge(user_query, top_k=3):
|
29 |
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
|
30 |
distances, indices = faiss_index.search(query_embedding, top_k)
|
31 |
|
32 |
retrieved_texts = []
|
33 |
for idx in indices[0]: # Extract top_k results
|
34 |
if idx != -1: # Ensure valid index
|
35 |
+
retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)")
|
36 |
|
37 |
+
return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**"
|
38 |
|
39 |
+
# πΉ Chatbot Response Function (Forcing FAISS Context)
|
40 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
41 |
+
faiss_context = retrieve_faiss_knowledge(message)
|
42 |
|
43 |
+
# π₯ Force the model to use FAISS
|
44 |
+
full_prompt = f"""### System Instruction:
|
45 |
+
You MUST use the provided FAISS data to generate your response.
|
46 |
+
If no FAISS data is found, return "I don't have enough information."
|
|
|
|
|
47 |
|
48 |
+
### Retrieved FAISS Data:
|
49 |
+
{faiss_context}
|
50 |
|
51 |
+
### User Query:
|
52 |
+
{message}
|
53 |
+
|
54 |
+
### Response:
|
55 |
+
"""
|
56 |
|
57 |
response = client.text_generation(
|
58 |
full_prompt,
|
|
|
61 |
top_p=top_p,
|
62 |
)
|
63 |
|
64 |
+
# β
Extract only the model-generated response
|
65 |
cleaned_response = response.split("### Response:")[-1].strip()
|
66 |
+
|
67 |
history.append((message, cleaned_response)) # β
Update chat history
|
68 |
+
|
69 |
yield cleaned_response # β
Output the response
|
70 |
|
71 |
# πΉ Gradio Chat Interface
|
72 |
demo = gr.ChatInterface(
|
73 |
respond,
|
74 |
additional_inputs=[
|
75 |
+
gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"),
|
76 |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
77 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
78 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|