Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import faiss
|
4 |
-
import torch
|
5 |
import json
|
|
|
6 |
import numpy as np
|
7 |
-
|
8 |
from sentence_transformers import SentenceTransformer
|
|
|
9 |
|
10 |
-
# Hugging Face Credentials
|
11 |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
|
12 |
-
|
13 |
-
api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
index = faiss.read_index(faiss_local_path)
|
18 |
|
19 |
-
# Load
|
20 |
-
|
21 |
|
22 |
-
# Hugging Face
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
retrieved_texts = []
|
31 |
-
for idx in indices[0]: #
|
32 |
-
if idx != -1: #
|
33 |
-
retrieved_texts.append(f"
|
34 |
|
35 |
-
return "\n".join(retrieved_texts) if retrieved_texts else "No relevant
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
prompt = f"""{system_prompt}
|
41 |
-
{history_str}
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
"""
|
48 |
-
return prompt
|
49 |
|
|
|
50 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
51 |
-
|
52 |
-
retrieved_context = retrieve_relevant_context(message)
|
53 |
-
|
54 |
-
# πΉ Include retrieved context in the prompt
|
55 |
-
full_prompt = f"{retrieved_context}\n\n{format_alpaca_prompt(message, system_message, history)}"
|
56 |
|
57 |
response = client.text_generation(
|
58 |
full_prompt,
|
@@ -61,17 +60,18 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
61 |
top_p=top_p,
|
62 |
)
|
63 |
|
64 |
-
# β
Extract only
|
65 |
cleaned_response = response.split("### Response:")[-1].strip()
|
66 |
|
67 |
-
history.append((message, cleaned_response)) # β
Update history
|
68 |
|
69 |
-
yield cleaned_response # β
Output
|
70 |
|
|
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
-
gr.Textbox(value="You are a
|
75 |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
77 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
import json
|
4 |
+
import faiss
|
5 |
import numpy as np
|
6 |
+
import torch
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
from huggingface_hub import InferenceClient, hf_hub_download
|
9 |
|
10 |
+
# πΉ Hugging Face Credentials
|
11 |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf"
|
12 |
+
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Store your token as an environment variable for security
|
|
|
13 |
|
14 |
+
# πΉ FAISS Index Path
|
15 |
+
FAISS_PATH = "asa_faiss.index"
|
|
|
16 |
|
17 |
+
# πΉ Load Sentence Transformer for Embeddings
|
18 |
+
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
19 |
|
20 |
+
# πΉ Load FAISS Index from Hugging Face
|
21 |
+
faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN)
|
22 |
+
faiss_index = faiss.read_index(faiss_local_path)
|
23 |
|
24 |
+
# πΉ Initialize Hugging Face Model Client
|
25 |
+
client = InferenceClient(model=HF_REPO, token=HF_TOKEN)
|
26 |
+
|
27 |
+
# πΉ Retrieve Relevant FAISS Context
|
28 |
+
def retrieve_relevant_context(user_query, top_k=3):
|
29 |
+
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy()
|
30 |
+
distances, indices = faiss_index.search(query_embedding, top_k)
|
31 |
|
32 |
retrieved_texts = []
|
33 |
+
for idx in indices[0]: # Extract top_k results
|
34 |
+
if idx != -1: # Ensure valid index
|
35 |
+
retrieved_texts.append(f"Example: {idx} β {idx}") # Customize how retrieved data appears
|
36 |
|
37 |
+
return "\n".join(retrieved_texts) if retrieved_texts else "No relevant data found."
|
38 |
|
39 |
+
# πΉ Format Model Prompt with FAISS Guidance
|
40 |
+
def format_prompt(user_input, system_prompt, history):
|
41 |
+
retrieved_context = retrieve_relevant_context(user_input)
|
|
|
|
|
42 |
|
43 |
+
faiss_instruction = (
|
44 |
+
"Use the following example responses as a guide for formatting and writing style:\n"
|
45 |
+
f"{retrieved_context}\n\n"
|
46 |
+
"### Instruction:\n"
|
47 |
+
f"{user_input}\n\n### Response:"
|
48 |
+
)
|
49 |
|
50 |
+
return faiss_instruction
|
|
|
|
|
51 |
|
52 |
+
# πΉ Chatbot Response Function
|
53 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
54 |
+
full_prompt = format_prompt(message, system_message, history)
|
|
|
|
|
|
|
|
|
55 |
|
56 |
response = client.text_generation(
|
57 |
full_prompt,
|
|
|
60 |
top_p=top_p,
|
61 |
)
|
62 |
|
63 |
+
# β
Extract only model-generated response
|
64 |
cleaned_response = response.split("### Response:")[-1].strip()
|
65 |
|
66 |
+
history.append((message, cleaned_response)) # β
Update chat history
|
67 |
|
68 |
+
yield cleaned_response # β
Output the response
|
69 |
|
70 |
+
# πΉ Gradio Chat Interface
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
additional_inputs=[
|
74 |
+
gr.Textbox(value="You are a helpful AI trained to follow FAISS-based writing styles.", label="System message"),
|
75 |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
77 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|