Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaConfig | |
from peft import PeftModel # For loading adapter files | |
# Path to the base model and adapter | |
BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path | |
ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo | |
# Function to clean rope_scaling in model config | |
def clean_rope_scaling(config): | |
if "rope_scaling" in config: | |
valid_rope_scaling = {"type": "linear", "factor": config["rope_scaling"].get("factor", 1.0)} | |
config["rope_scaling"] = valid_rope_scaling | |
return config | |
# Load base model and tokenizer | |
print("Loading base model and tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH) | |
# Load and clean the model config | |
config = LlamaConfig.from_pretrained(BASE_MODEL_PATH) | |
clean_config = clean_rope_scaling(config.to_dict()) | |
# Load model with cleaned config | |
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, config=clean_config, torch_dtype=torch.float16, device_map="auto") | |
# Load adapter using PEFT | |
print("Loading adapter...") | |
model = PeftModel.from_pretrained(model, ADAPTER_PATH) | |
# Set model to evaluation mode | |
model.eval() | |
# Function to generate responses | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Prepare input | |
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) | |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) | |
# Generate response | |
generation_config = GenerationConfig( | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
output_ids = model.generate(**inputs, generation_config=generation_config) | |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
return response.split("assistant:")[-1].strip() | |
# Gradio Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |