FuturesonyAi / app.py
Futuresony's picture
Update app.py
acdea71 verified
raw
history blame
2.83 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaConfig
from peft import PeftModel # For loading adapter files
# Path to the base model and adapter
BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path
ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo
# Function to clean rope_scaling in model config
def clean_rope_scaling(config):
if "rope_scaling" in config:
valid_rope_scaling = {"type": "linear", "factor": config["rope_scaling"].get("factor", 1.0)}
config["rope_scaling"] = valid_rope_scaling
return config
# Load base model and tokenizer
print("Loading base model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
# Load and clean the model config
config = LlamaConfig.from_pretrained(BASE_MODEL_PATH)
clean_config = clean_rope_scaling(config.to_dict())
# Load model with cleaned config
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, config=clean_config, torch_dtype=torch.float16, device_map="auto")
# Load adapter using PEFT
print("Loading adapter...")
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
# Set model to evaluation mode
model.eval()
# Function to generate responses
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Prepare input
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
# Generate response
generation_config = GenerationConfig(
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
output_ids = model.generate(**inputs, generation_config=generation_config)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response.split("assistant:")[-1].strip()
# Gradio Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()