import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaConfig from peft import PeftModel # For loading adapter files # Path to the base model and adapter BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo # Function to clean rope_scaling in model config def clean_rope_scaling(config): if "rope_scaling" in config: valid_rope_scaling = {"type": "linear", "factor": config["rope_scaling"].get("factor", 1.0)} config["rope_scaling"] = valid_rope_scaling return config # Load base model and tokenizer print("Loading base model and tokenizer...") tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH) # Load and clean the model config config = LlamaConfig.from_pretrained(BASE_MODEL_PATH) clean_config = clean_rope_scaling(config.to_dict()) # Load model with cleaned config model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, config=clean_config, torch_dtype=torch.float16, device_map="auto") # Load adapter using PEFT print("Loading adapter...") model = PeftModel.from_pretrained(model, ADAPTER_PATH) # Set model to evaluation mode model.eval() # Function to generate responses def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Prepare input input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # Generate response generation_config = GenerationConfig( max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) output_ids = model.generate(**inputs, generation_config=generation_config) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) return response.split("assistant:")[-1].strip() # Gradio Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()