Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import json | |
import faiss | |
import numpy as np | |
import torch | |
from sentence_transformers import SentenceTransformer | |
from huggingface_hub import InferenceClient, hf_hub_download | |
# πΉ Hugging Face Credentials | |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf" | |
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # Ensure this is set in your environment | |
# πΉ FAISS Index Path | |
FAISS_PATH = "asa_faiss.index" | |
# πΉ Load Sentence Transformer for Embeddings | |
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
# πΉ Load FAISS Index from Hugging Face | |
faiss_local_path = hf_hub_download(HF_REPO, "asa_faiss.index", token=HF_TOKEN) | |
faiss_index = faiss.read_index(faiss_local_path) | |
# πΉ Initialize Hugging Face Model Client | |
client = InferenceClient(model=HF_REPO, token=HF_TOKEN) | |
# πΉ Retrieve Relevant FAISS Data | |
def retrieve_faiss_knowledge(user_query, top_k=3): | |
query_embedding = embedder.encode([user_query], convert_to_tensor=True).cpu().numpy() | |
distances, indices = faiss_index.search(query_embedding, top_k) | |
retrieved_texts = [] | |
for idx in indices[0]: # Extract top_k results | |
if idx != -1: # Ensure valid index | |
retrieved_texts.append(f"Example {idx}: (Extracted FAISS Data)") | |
return "\n".join(retrieved_texts) if retrieved_texts else "**No relevant FAISS data found.**" | |
# πΉ Chatbot Response Function (Forcing FAISS Context) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
faiss_context = retrieve_faiss_knowledge(message) | |
# π₯ Force the model to use FAISS | |
full_prompt = f"""### System Instruction: | |
You MUST use the provided FAISS data to generate your response. | |
If no FAISS data is found, return "I don't have enough information." | |
### Retrieved FAISS Data: | |
{faiss_context} | |
### User Query: | |
{message} | |
### Response: | |
""" | |
response = client.text_generation( | |
full_prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# β Extract only the model-generated response | |
cleaned_response = response.split("### Response:")[-1].strip() | |
history.append((message, cleaned_response)) # β Update chat history | |
yield cleaned_response # β Output the response | |
# πΉ Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a knowledge assistant that must use FAISS context.", label="System message"), | |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |