Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from peft import PeftModel | |
# Load base + LoRA model | |
base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
lora_model = "Futuresony/future_12_10_2024" | |
tokenizer = AutoTokenizer.from_pretrained(base_model) | |
base = AutoModelForCausalLM.from_pretrained(base_model) | |
model = PeftModel.from_pretrained(base, lora_model) | |
model.eval() | |
# Create generation pipeline | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Define the chat function | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
prompt = system_message + "\n" | |
for user, bot in history: | |
prompt += f"User: {user}\nAssistant: {bot}\n" | |
prompt += f"User: {message}\nAssistant:" | |
response = generator( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
return_full_text=False, | |
)[0]["generated_text"] | |
yield response.strip() | |
# Set up Gradio UI | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |