Futuresony commited on
Commit
4d2b819
·
verified ·
1 Parent(s): 812ac06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -49
app.py CHANGED
@@ -1,65 +1,47 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Futuresony/future_12_10_2024")
8
- #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
  temperature=temperature,
36
  top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
 
39
 
40
- response += token
41
- yield response
42
 
43
-
44
- """
45
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
- """
47
  demo = gr.ChatInterface(
48
  respond,
49
  additional_inputs=[
50
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
  ],
61
  )
62
 
63
-
64
  if __name__ == "__main__":
65
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ from peft import PeftModel
4
+
5
+ # Load base + LoRA model
6
+ base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
7
+ lora_model = "Futuresony/future_12_10_2024"
8
+
9
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
10
+ base = AutoModelForCausalLM.from_pretrained(base_model)
11
+ model = PeftModel.from_pretrained(base, lora_model)
12
+ model.eval()
13
+
14
+ # Create generation pipeline
15
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
16
+
17
+ # Define the chat function
18
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
19
+ prompt = system_message + "\n"
20
+ for user, bot in history:
21
+ prompt += f"User: {user}\nAssistant: {bot}\n"
22
+ prompt += f"User: {message}\nAssistant:"
23
+
24
+ response = generator(
25
+ prompt,
26
+ max_new_tokens=max_tokens,
 
 
 
 
 
 
 
 
27
  temperature=temperature,
28
  top_p=top_p,
29
+ do_sample=True,
30
+ return_full_text=False,
31
+ )[0]["generated_text"]
32
 
33
+ yield response.strip()
 
34
 
35
+ # Set up Gradio UI
 
 
 
36
  demo = gr.ChatInterface(
37
  respond,
38
  additional_inputs=[
39
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
40
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
41
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
42
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
43
  ],
44
  )
45
 
 
46
  if __name__ == "__main__":
47
  demo.launch()