|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
import torch |
|
from threading import Thread |
|
import re |
|
import uuid |
|
|
|
|
|
phi4_model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B" |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto") |
|
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path) |
|
|
|
def format_math(text): |
|
text = re.sub(r"\[(.*?)\]", r"$$\1$$", text, flags=re.DOTALL) |
|
text = text.replace(r"\(", "$").replace(r"\)", "$") |
|
return text |
|
|
|
|
|
conversations = {} |
|
|
|
|
|
def generate_conversation_id(): |
|
return str(uuid.uuid4())[:8] |
|
|
|
@spaces.GPU(duration=60) |
|
|
|
def generate_response(user_message, max_tokens, temperature, top_p, history_state): |
|
if not user_message.strip(): |
|
return history_state, history_state |
|
|
|
model = phi4_model |
|
tokenizer = phi4_tokenizer |
|
start_tag = "<|im_start|>" |
|
sep_tag = "<|im_sep|>" |
|
end_tag = "<|im_end|>" |
|
|
|
system_message = "Your role as an assistant..." |
|
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}" |
|
for message in history_state: |
|
if message["role"] == "user": |
|
prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}" |
|
elif message["role"] == "assistant" and message["content"]: |
|
prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}" |
|
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
generation_kwargs = { |
|
"input_ids": inputs["input_ids"], |
|
"attention_mask": inputs["attention_mask"], |
|
"max_new_tokens": int(max_tokens), |
|
"do_sample": True, |
|
"temperature": temperature, |
|
"top_k": 50, |
|
"top_p": top_p, |
|
"repetition_penalty": 1.0, |
|
"pad_token_id": tokenizer.eos_token_id, |
|
"streamer": streamer, |
|
} |
|
|
|
try: |
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
except Exception: |
|
yield history_state + [{"role": "user", "content": user_message}, {"role": "assistant", "content": "⚠️ Generation failed."}], history_state |
|
return |
|
|
|
assistant_response = "" |
|
new_history = history_state + [ |
|
{"role": "user", "content": user_message}, |
|
{"role": "assistant", "content": ""} |
|
] |
|
|
|
try: |
|
for new_token in streamer: |
|
if "<|end" in new_token: |
|
continue |
|
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "") |
|
assistant_response += cleaned_token |
|
new_history[-1]["content"] = assistant_response.strip() |
|
yield new_history, new_history |
|
except Exception: |
|
pass |
|
|
|
yield new_history, new_history |
|
|
|
|
|
example_messages = { |
|
"JEE Main 2025 Combinatorics": "From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is?", |
|
"JEE Main 2025 Co-ordinate Geometry": "A circle \\(C\\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \\(r\\) be the radius of a circle that has centre at the point \\((2, 5)\\) and intersects the circle \\(C\\) at exactly two points. If the set of all possible values of \\(r\\) is the interval \\((\\alpha, \\beta)\\), then \\(3\\beta - 2\\alpha\\) is?", |
|
"JEE Main 2025 Prob-Stats": "A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \\(\\mu\\) and \\(\\sigma^2\\) denote the mean and variance of \\(X\\), then the value of \\(64(\\mu + \\sigma^2)\\) is?", |
|
"JEE Main 2025 Physics": "A massless spring gets elongated by amount x_1 under a tension of 5 N . Its elongation is x_2 under the tension of 7 N . For the elongation of 5x_1 - 2x_2 , the tension in the spring will be?" |
|
} |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown( |
|
""" |
|
# Ramanujan Ganit R1 14B V1 Chatbot |
|
|
|
Welcome to the Ramanujan Ganit R1 14B V1 Chatbot, developed by Fractal AI Research! |
|
|
|
Our model excels at reasoning tasks in mathematics and science. |
|
|
|
Try the example problems below from JEE Main 2025 or type in your own problems to see how our model breaks down complex reasoning problems. |
|
""" |
|
) |
|
|
|
|
|
with gr.Sidebar(): |
|
gr.Markdown("## Conversations") |
|
conversation_selector = gr.Radio(choices=[], label="Select Conversation", interactive=True) |
|
new_convo_button = gr.Button("New Conversation") |
|
|
|
|
|
current_convo_id = gr.State(generate_conversation_id()) |
|
history_state = gr.State([]) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown("### Settings") |
|
max_tokens_slider = gr.Slider( |
|
minimum=6144, |
|
maximum=32768, |
|
step=1024, |
|
value=16384, |
|
label="Max Tokens" |
|
) |
|
with gr.Accordion("Advanced Settings", open=False): |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=2.0, |
|
value=0.6, |
|
label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
label="Top-p" |
|
) |
|
|
|
with gr.Column(scale=4): |
|
chatbot = gr.Chatbot(label="Chat", type="messages") |
|
with gr.Row(): |
|
user_input = gr.Textbox( |
|
label="User Input", |
|
placeholder="Type your question here...", |
|
scale=8 |
|
) |
|
with gr.Column(): |
|
submit_button = gr.Button("Send", variant="primary", scale=1) |
|
clear_button = gr.Button("Clear", scale=1) |
|
gr.Markdown("**Try these examples:**") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
example1_button = gr.Button("JEE Main 2025 Combinatorics") |
|
with gr.Column(scale=1): |
|
example2_button = gr.Button("JEE Main 2025 Co-ordinate Geometry") |
|
with gr.Column(scale=1): |
|
example3_button = gr.Button("JEE Main 2025 Prob-Stats") |
|
with gr.Column(scale=1): |
|
example4_button = gr.Button("JEE Main 2025 Physics") |
|
|
|
|
|
|
|
def update_conversation_list(): |
|
return list(conversations.keys()) |
|
|
|
|
|
def start_new_conversation(): |
|
new_id = generate_conversation_id() |
|
conversations[new_id] = [] |
|
return new_id, [], gr.update(choices=update_conversation_list(), value=new_id) |
|
|
|
|
|
def load_conversation(selected_id): |
|
if selected_id in conversations: |
|
return selected_id, conversations[selected_id], conversations[selected_id] |
|
else: |
|
return current_convo_id.value, history_state.value, history_state.value |
|
|
|
|
|
def send_message(user_message, max_tokens, temperature, top_p, convo_id, history): |
|
if convo_id not in conversations: |
|
conversations[convo_id] = history |
|
for updated_history, new_history in generate_response(user_message, max_tokens, temperature, top_p, history): |
|
conversations[convo_id] = new_history |
|
yield updated_history, new_history |
|
|
|
|
|
submit_button.click( |
|
fn=send_message, |
|
inputs=[user_input, max_tokens_slider, temperature_slider, top_p_slider, current_convo_id, history_state], |
|
outputs=[chatbot, history_state] |
|
).then( |
|
fn=lambda: gr.update(value=""), |
|
inputs=None, |
|
outputs=user_input |
|
) |
|
|
|
clear_button.click( |
|
fn=lambda: ([], []), |
|
inputs=None, |
|
outputs=[chatbot, history_state] |
|
) |
|
|
|
new_convo_button.click( |
|
fn=start_new_conversation, |
|
inputs=None, |
|
outputs=[current_convo_id, history_state, conversation_selector] |
|
) |
|
|
|
conversation_selector.change( |
|
fn=load_conversation, |
|
inputs=conversation_selector, |
|
outputs=[current_convo_id, history_state, chatbot] |
|
) |
|
|
|
example1_button.click( |
|
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Combinatorics"]), |
|
inputs=None, |
|
outputs=user_input |
|
) |
|
example2_button.click( |
|
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Co-ordinate Geometry"]), |
|
inputs=None, |
|
outputs=user_input |
|
) |
|
example3_button.click( |
|
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Prob-Stats"]), |
|
inputs=None, |
|
outputs=user_input |
|
) |
|
example4_button.click( |
|
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Physics"]), |
|
inputs=None, |
|
outputs=user_input |
|
) |
|
|
|
demo.launch(share=True, ssr_mode=False) |
|
|