Fathom-R1-14B / app.py
FractalAIR's picture
Update app.py
02e4fca verified
raw
history blame
9.61 kB
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import re
import uuid
# Load model and tokenizer
phi4_model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
def format_math(text):
text = re.sub(r"\[(.*?)\]", r"$$\1$$", text, flags=re.DOTALL)
text = text.replace(r"\(", "$").replace(r"\)", "$")
return text
# Global dictionary to store all conversations
conversations = {}
# Function to generate a unique conversation ID
def generate_conversation_id():
return str(uuid.uuid4())[:8]
@spaces.GPU(duration=60)
# Function to generate response
def generate_response(user_message, max_tokens, temperature, top_p, history_state):
if not user_message.strip():
return history_state, history_state
model = phi4_model
tokenizer = phi4_tokenizer
start_tag = "<|im_start|>"
sep_tag = "<|im_sep|>"
end_tag = "<|im_end|>"
system_message = "Your role as an assistant..."
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
for message in history_state:
if message["role"] == "user":
prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
elif message["role"] == "assistant" and message["content"]:
prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": int(max_tokens),
"do_sample": True,
"temperature": temperature,
"top_k": 50,
"top_p": top_p,
"repetition_penalty": 1.0,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
try:
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
except Exception:
yield history_state + [{"role": "user", "content": user_message}, {"role": "assistant", "content": "⚠️ Generation failed."}], history_state
return
assistant_response = ""
new_history = history_state + [
{"role": "user", "content": user_message},
{"role": "assistant", "content": ""}
]
try:
for new_token in streamer:
if "<|end" in new_token:
continue
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
assistant_response += cleaned_token
new_history[-1]["content"] = assistant_response.strip()
yield new_history, new_history
except Exception:
pass
yield new_history, new_history
# Example messages
example_messages = {
"JEE Main 2025 Combinatorics": "From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is?",
"JEE Main 2025 Co-ordinate Geometry": "A circle \\(C\\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \\(r\\) be the radius of a circle that has centre at the point \\((2, 5)\\) and intersects the circle \\(C\\) at exactly two points. If the set of all possible values of \\(r\\) is the interval \\((\\alpha, \\beta)\\), then \\(3\\beta - 2\\alpha\\) is?",
"JEE Main 2025 Prob-Stats": "A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \\(\\mu\\) and \\(\\sigma^2\\) denote the mean and variance of \\(X\\), then the value of \\(64(\\mu + \\sigma^2)\\) is?",
"JEE Main 2025 Physics": "A massless spring gets elongated by amount x_1 under a tension of 5 N . Its elongation is x_2 under the tension of 7 N . For the elongation of 5x_1 - 2x_2 , the tension in the spring will be?"
}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Ramanujan Ganit R1 14B V1 Chatbot
Welcome to the Ramanujan Ganit R1 14B V1 Chatbot, developed by Fractal AI Research!
Our model excels at reasoning tasks in mathematics and science.
Try the example problems below from JEE Main 2025 or type in your own problems to see how our model breaks down complex reasoning problems.
"""
)
# Sidebar for conversation history
with gr.Sidebar():
gr.Markdown("## Conversations")
conversation_selector = gr.Radio(choices=[], label="Select Conversation", interactive=True)
new_convo_button = gr.Button("New Conversation")
# State to store current conversation ID and history
current_convo_id = gr.State(generate_conversation_id())
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Settings")
max_tokens_slider = gr.Slider(
minimum=6144,
maximum=32768,
step=1024,
value=16384,
label="Max Tokens"
)
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
label="Top-p"
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Chat", type="messages")
with gr.Row():
user_input = gr.Textbox(
label="User Input",
placeholder="Type your question here...",
scale=8 # This makes the textbox take up the entire width
)
with gr.Column():
submit_button = gr.Button("Send", variant="primary", scale=1)
clear_button = gr.Button("Clear", scale=1)
gr.Markdown("**Try these examples:**")
with gr.Row():
with gr.Column(scale=1):
example1_button = gr.Button("JEE Main 2025 Combinatorics")
with gr.Column(scale=1):
example2_button = gr.Button("JEE Main 2025 Co-ordinate Geometry")
with gr.Column(scale=1):
example3_button = gr.Button("JEE Main 2025 Prob-Stats")
with gr.Column(scale=1):
example4_button = gr.Button("JEE Main 2025 Physics")
# Function to update conversation list
def update_conversation_list():
return list(conversations.keys())
# Function to start a new conversation
def start_new_conversation():
new_id = generate_conversation_id()
conversations[new_id] = []
return new_id, [], gr.update(choices=update_conversation_list(), value=new_id)
# Function to load selected conversation
def load_conversation(selected_id):
if selected_id in conversations:
return selected_id, conversations[selected_id], conversations[selected_id]
else:
return current_convo_id.value, history_state.value, history_state.value
# Send message
def send_message(user_message, max_tokens, temperature, top_p, convo_id, history):
if convo_id not in conversations:
conversations[convo_id] = history
for updated_history, new_history in generate_response(user_message, max_tokens, temperature, top_p, history):
conversations[convo_id] = new_history
yield updated_history, new_history
# Button and event handlers
submit_button.click(
fn=send_message,
inputs=[user_input, max_tokens_slider, temperature_slider, top_p_slider, current_convo_id, history_state],
outputs=[chatbot, history_state]
).then(
fn=lambda: gr.update(value=""),
inputs=None,
outputs=user_input
)
clear_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[chatbot, history_state]
)
new_convo_button.click(
fn=start_new_conversation,
inputs=None,
outputs=[current_convo_id, history_state, conversation_selector]
)
conversation_selector.change(
fn=load_conversation,
inputs=conversation_selector,
outputs=[current_convo_id, history_state, chatbot]
)
example1_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Combinatorics"]),
inputs=None,
outputs=user_input
)
example2_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Co-ordinate Geometry"]),
inputs=None,
outputs=user_input
)
example3_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Prob-Stats"]),
inputs=None,
outputs=user_input
)
example4_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Physics"]),
inputs=None,
outputs=user_input
)
demo.launch(share=True, ssr_mode=False)