File size: 9,614 Bytes
1bf7168 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba 5889e5d a878ad7 5889e5d 15d32ba e844849 15d32ba e844849 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba b962c46 5889e5d 15d32ba feb219b 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba 3f8bcd2 15d32ba 3f8bcd2 5889e5d 3f8bcd2 5889e5d 3f8bcd2 5889e5d 15d32ba 02e4fca 5889e5d 15d32ba 5889e5d 15d32ba 5889e5d 15d32ba b962c46 15d32ba b962c46 15d32ba b962c46 15d32ba 5889e5d 15d32ba e844849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import re
import uuid
# Load model and tokenizer
phi4_model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
def format_math(text):
text = re.sub(r"\[(.*?)\]", r"$$\1$$", text, flags=re.DOTALL)
text = text.replace(r"\(", "$").replace(r"\)", "$")
return text
# Global dictionary to store all conversations
conversations = {}
# Function to generate a unique conversation ID
def generate_conversation_id():
return str(uuid.uuid4())[:8]
@spaces.GPU(duration=60)
# Function to generate response
def generate_response(user_message, max_tokens, temperature, top_p, history_state):
if not user_message.strip():
return history_state, history_state
model = phi4_model
tokenizer = phi4_tokenizer
start_tag = "<|im_start|>"
sep_tag = "<|im_sep|>"
end_tag = "<|im_end|>"
system_message = "Your role as an assistant..."
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
for message in history_state:
if message["role"] == "user":
prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
elif message["role"] == "assistant" and message["content"]:
prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
inputs = tokenizer(prompt, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": int(max_tokens),
"do_sample": True,
"temperature": temperature,
"top_k": 50,
"top_p": top_p,
"repetition_penalty": 1.0,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
try:
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
except Exception:
yield history_state + [{"role": "user", "content": user_message}, {"role": "assistant", "content": "⚠️ Generation failed."}], history_state
return
assistant_response = ""
new_history = history_state + [
{"role": "user", "content": user_message},
{"role": "assistant", "content": ""}
]
try:
for new_token in streamer:
if "<|end" in new_token:
continue
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
assistant_response += cleaned_token
new_history[-1]["content"] = assistant_response.strip()
yield new_history, new_history
except Exception:
pass
yield new_history, new_history
# Example messages
example_messages = {
"JEE Main 2025 Combinatorics": "From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is?",
"JEE Main 2025 Co-ordinate Geometry": "A circle \\(C\\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \\(r\\) be the radius of a circle that has centre at the point \\((2, 5)\\) and intersects the circle \\(C\\) at exactly two points. If the set of all possible values of \\(r\\) is the interval \\((\\alpha, \\beta)\\), then \\(3\\beta - 2\\alpha\\) is?",
"JEE Main 2025 Prob-Stats": "A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \\(\\mu\\) and \\(\\sigma^2\\) denote the mean and variance of \\(X\\), then the value of \\(64(\\mu + \\sigma^2)\\) is?",
"JEE Main 2025 Physics": "A massless spring gets elongated by amount x_1 under a tension of 5 N . Its elongation is x_2 under the tension of 7 N . For the elongation of 5x_1 - 2x_2 , the tension in the spring will be?"
}
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Ramanujan Ganit R1 14B V1 Chatbot
Welcome to the Ramanujan Ganit R1 14B V1 Chatbot, developed by Fractal AI Research!
Our model excels at reasoning tasks in mathematics and science.
Try the example problems below from JEE Main 2025 or type in your own problems to see how our model breaks down complex reasoning problems.
"""
)
# Sidebar for conversation history
with gr.Sidebar():
gr.Markdown("## Conversations")
conversation_selector = gr.Radio(choices=[], label="Select Conversation", interactive=True)
new_convo_button = gr.Button("New Conversation")
# State to store current conversation ID and history
current_convo_id = gr.State(generate_conversation_id())
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Settings")
max_tokens_slider = gr.Slider(
minimum=6144,
maximum=32768,
step=1024,
value=16384,
label="Max Tokens"
)
with gr.Accordion("Advanced Settings", open=False):
temperature_slider = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
label="Top-p"
)
with gr.Column(scale=4):
chatbot = gr.Chatbot(label="Chat", type="messages")
with gr.Row():
user_input = gr.Textbox(
label="User Input",
placeholder="Type your question here...",
scale=8 # This makes the textbox take up the entire width
)
with gr.Column():
submit_button = gr.Button("Send", variant="primary", scale=1)
clear_button = gr.Button("Clear", scale=1)
gr.Markdown("**Try these examples:**")
with gr.Row():
with gr.Column(scale=1):
example1_button = gr.Button("JEE Main 2025 Combinatorics")
with gr.Column(scale=1):
example2_button = gr.Button("JEE Main 2025 Co-ordinate Geometry")
with gr.Column(scale=1):
example3_button = gr.Button("JEE Main 2025 Prob-Stats")
with gr.Column(scale=1):
example4_button = gr.Button("JEE Main 2025 Physics")
# Function to update conversation list
def update_conversation_list():
return list(conversations.keys())
# Function to start a new conversation
def start_new_conversation():
new_id = generate_conversation_id()
conversations[new_id] = []
return new_id, [], gr.update(choices=update_conversation_list(), value=new_id)
# Function to load selected conversation
def load_conversation(selected_id):
if selected_id in conversations:
return selected_id, conversations[selected_id], conversations[selected_id]
else:
return current_convo_id.value, history_state.value, history_state.value
# Send message
def send_message(user_message, max_tokens, temperature, top_p, convo_id, history):
if convo_id not in conversations:
conversations[convo_id] = history
for updated_history, new_history in generate_response(user_message, max_tokens, temperature, top_p, history):
conversations[convo_id] = new_history
yield updated_history, new_history
# Button and event handlers
submit_button.click(
fn=send_message,
inputs=[user_input, max_tokens_slider, temperature_slider, top_p_slider, current_convo_id, history_state],
outputs=[chatbot, history_state]
).then(
fn=lambda: gr.update(value=""),
inputs=None,
outputs=user_input
)
clear_button.click(
fn=lambda: ([], []),
inputs=None,
outputs=[chatbot, history_state]
)
new_convo_button.click(
fn=start_new_conversation,
inputs=None,
outputs=[current_convo_id, history_state, conversation_selector]
)
conversation_selector.change(
fn=load_conversation,
inputs=conversation_selector,
outputs=[current_convo_id, history_state, chatbot]
)
example1_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Combinatorics"]),
inputs=None,
outputs=user_input
)
example2_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Co-ordinate Geometry"]),
inputs=None,
outputs=user_input
)
example3_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Prob-Stats"]),
inputs=None,
outputs=user_input
)
example4_button.click(
fn=lambda: gr.update(value=example_messages["JEE Main 2025 Physics"]),
inputs=None,
outputs=user_input
)
demo.launch(share=True, ssr_mode=False)
|