File size: 9,614 Bytes
1bf7168
15d32ba
 
 
 
 
5889e5d
15d32ba
5889e5d
15d32ba
 
 
 
 
 
 
 
 
 
 
5889e5d
 
 
 
 
 
 
a878ad7
5889e5d
15d32ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e844849
15d32ba
e844849
15d32ba
 
 
 
 
 
5889e5d
15d32ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5889e5d
15d32ba
b962c46
 
5889e5d
 
15d32ba
 
feb219b
15d32ba
 
 
5889e5d
15d32ba
5889e5d
15d32ba
5889e5d
15d32ba
 
 
 
5889e5d
 
 
 
 
 
 
 
15d32ba
 
 
 
 
3f8bcd2
 
 
 
 
 
 
15d32ba
3f8bcd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5889e5d
3f8bcd2
 
 
5889e5d
3f8bcd2
5889e5d
 
 
15d32ba
 
02e4fca
 
 
 
 
 
 
 
 
5889e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15d32ba
5889e5d
 
15d32ba
 
 
 
 
 
 
 
 
 
 
 
 
5889e5d
 
 
 
 
 
 
 
 
 
 
 
15d32ba
b962c46
15d32ba
 
 
 
b962c46
15d32ba
 
 
 
b962c46
15d32ba
 
 
5889e5d
 
 
 
 
15d32ba
e844849
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import re
import uuid

# Load model and tokenizer
phi4_model_path = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
device = "cuda:0" if torch.cuda.is_available() else "cpu"

phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)

def format_math(text):
    text = re.sub(r"\[(.*?)\]", r"$$\1$$", text, flags=re.DOTALL)
    text = text.replace(r"\(", "$").replace(r"\)", "$")
    return text

# Global dictionary to store all conversations
conversations = {}

# Function to generate a unique conversation ID
def generate_conversation_id():
    return str(uuid.uuid4())[:8]

@spaces.GPU(duration=60)
# Function to generate response
def generate_response(user_message, max_tokens, temperature, top_p, history_state):
    if not user_message.strip():
        return history_state, history_state

    model = phi4_model
    tokenizer = phi4_tokenizer
    start_tag = "<|im_start|>"
    sep_tag = "<|im_sep|>"
    end_tag = "<|im_end|>"

    system_message = "Your role as an assistant..."
    prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
    for message in history_state:
        if message["role"] == "user":
            prompt += f"{start_tag}user{sep_tag}{message['content']}{end_tag}"
        elif message["role"] == "assistant" and message["content"]:
            prompt += f"{start_tag}assistant{sep_tag}{message['content']}{end_tag}"
    prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"

    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "max_new_tokens": int(max_tokens),
        "do_sample": True,
        "temperature": temperature,
        "top_k": 50,
        "top_p": top_p,
        "repetition_penalty": 1.0,
        "pad_token_id": tokenizer.eos_token_id,
        "streamer": streamer,
    }

    try:
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
    except Exception:
        yield history_state + [{"role": "user", "content": user_message}, {"role": "assistant", "content": "⚠️ Generation failed."}], history_state
        return

    assistant_response = ""
    new_history = history_state + [
        {"role": "user", "content": user_message},
        {"role": "assistant", "content": ""}
    ]

    try:
        for new_token in streamer:
            if "<|end" in new_token:
                continue
            cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
            assistant_response += cleaned_token
            new_history[-1]["content"] = assistant_response.strip()
            yield new_history, new_history
    except Exception:
        pass

    yield new_history, new_history

# Example messages
example_messages = {
    "JEE Main 2025 Combinatorics": "From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is?",
    "JEE Main 2025 Co-ordinate Geometry": "A circle \\(C\\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \\(r\\) be the radius of a circle that has centre at the point \\((2, 5)\\) and intersects the circle \\(C\\) at exactly two points. If the set of all possible values of \\(r\\) is the interval \\((\\alpha, \\beta)\\), then \\(3\\beta - 2\\alpha\\) is?",
    "JEE Main 2025 Prob-Stats": "A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \\(\\mu\\) and \\(\\sigma^2\\) denote the mean and variance of \\(X\\), then the value of \\(64(\\mu + \\sigma^2)\\) is?",
    "JEE Main 2025 Physics": "A massless spring gets elongated by amount x_1 under a tension of 5 N . Its elongation is x_2 under the tension of 7 N . For the elongation of 5x_1 - 2x_2 , the tension in the spring will be?"
}

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # Ramanujan Ganit R1 14B V1 Chatbot 

        Welcome to the Ramanujan Ganit R1 14B V1 Chatbot, developed by Fractal AI Research! 

        Our model excels at reasoning tasks in mathematics and science.

        Try the example problems below from JEE Main 2025 or type in your own problems to see how our model breaks down complex reasoning problems.
        """
    )

    # Sidebar for conversation history
    with gr.Sidebar():
        gr.Markdown("## Conversations")
        conversation_selector = gr.Radio(choices=[], label="Select Conversation", interactive=True)
        new_convo_button = gr.Button("New Conversation")

    # State to store current conversation ID and history
    current_convo_id = gr.State(generate_conversation_id())
    history_state = gr.State([])

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Settings")
            max_tokens_slider = gr.Slider(
                minimum=6144,
                maximum=32768,
                step=1024,
                value=16384,
                label="Max Tokens"
            )
            with gr.Accordion("Advanced Settings", open=False):
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=0.6,
                    label="Temperature"
                )
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    label="Top-p"
                )

        with gr.Column(scale=4):
            chatbot = gr.Chatbot(label="Chat", type="messages")
            with gr.Row():
                user_input = gr.Textbox(
                    label="User Input",
                    placeholder="Type your question here...",
                    scale=8  # This makes the textbox take up the entire width
                )
                with gr.Column():
                    submit_button = gr.Button("Send", variant="primary", scale=1)
                    clear_button = gr.Button("Clear", scale=1)
            gr.Markdown("**Try these examples:**")
            with gr.Row():
                with gr.Column(scale=1):
                    example1_button = gr.Button("JEE Main 2025 Combinatorics")
                with gr.Column(scale=1):
                    example2_button = gr.Button("JEE Main 2025 Co-ordinate Geometry")
                with gr.Column(scale=1):
                    example3_button = gr.Button("JEE Main 2025 Prob-Stats")
                with gr.Column(scale=1):
                    example4_button = gr.Button("JEE Main 2025 Physics")


    # Function to update conversation list
    def update_conversation_list():
        return list(conversations.keys())

    # Function to start a new conversation
    def start_new_conversation():
        new_id = generate_conversation_id()
        conversations[new_id] = []
        return new_id, [], gr.update(choices=update_conversation_list(), value=new_id)

    # Function to load selected conversation
    def load_conversation(selected_id):
        if selected_id in conversations:
            return selected_id, conversations[selected_id], conversations[selected_id]
        else:
            return current_convo_id.value, history_state.value, history_state.value

    # Send message
    def send_message(user_message, max_tokens, temperature, top_p, convo_id, history):
        if convo_id not in conversations:
            conversations[convo_id] = history
        for updated_history, new_history in generate_response(user_message, max_tokens, temperature, top_p, history):
            conversations[convo_id] = new_history
            yield updated_history, new_history

    # Button and event handlers
    submit_button.click(
        fn=send_message,
        inputs=[user_input, max_tokens_slider, temperature_slider, top_p_slider, current_convo_id, history_state],
        outputs=[chatbot, history_state]
    ).then(
        fn=lambda: gr.update(value=""),
        inputs=None,
        outputs=user_input
    )

    clear_button.click(
        fn=lambda: ([], []),
        inputs=None,
        outputs=[chatbot, history_state]
    )

    new_convo_button.click(
        fn=start_new_conversation,
        inputs=None,
        outputs=[current_convo_id, history_state, conversation_selector]
    )

    conversation_selector.change(
        fn=load_conversation,
        inputs=conversation_selector,
        outputs=[current_convo_id, history_state, chatbot]
    )

    example1_button.click(
        fn=lambda: gr.update(value=example_messages["JEE Main 2025 Combinatorics"]),
        inputs=None,
        outputs=user_input
    )
    example2_button.click(
        fn=lambda: gr.update(value=example_messages["JEE Main 2025 Co-ordinate Geometry"]),
        inputs=None,
        outputs=user_input
    )
    example3_button.click(
        fn=lambda: gr.update(value=example_messages["JEE Main 2025 Prob-Stats"]),
        inputs=None,
        outputs=user_input
    )
    example4_button.click(
        fn=lambda: gr.update(value=example_messages["JEE Main 2025 Physics"]),
        inputs=None,
        outputs=user_input
    )

demo.launch(share=True, ssr_mode=False)