File size: 19,896 Bytes
513a1f2
 
 
 
 
 
 
 
 
6282a14
513a1f2
 
 
 
 
 
 
 
 
 
 
 
dc9d402
513a1f2
 
 
16532e0
274692a
e8254b1
513a1f2
3388ab8
513a1f2
 
17c5050
3388ab8
 
513a1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0fab0
513a1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386c440
 
 
513a1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
386c440
513a1f2
386c440
 
513a1f2
 
 
 
ed0fab0
513a1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6282a14
513a1f2
3868d8d
513a1f2
3868d8d
 
386c440
3868d8d
 
386c440
6282a14
 
 
 
 
 
 
 
 
 
 
 
afb6533
6282a14
 
 
 
 
 
 
 
 
3868d8d
 
 
 
 
 
 
6282a14
 
 
 
 
 
 
3868d8d
 
 
 
 
 
 
 
 
 
513a1f2
 
 
 
 
 
 
 
 
6282a14
513a1f2
 
 
 
 
 
 
 
2424d59
dc9d402
57ca96a
 
dc9d402
57ca96a
 
513a1f2
93f0901
57ca96a
 
386c440
 
 
2424d59
57ca96a
2424d59
e8254b1
 
2424d59
93f0901
 
2424d59
 
 
 
 
 
e8254b1
 
 
93f0901
 
e8254b1
386c440
 
93f0901
386c440
 
 
57ca96a
386c440
274692a
 
 
 
57ca96a
 
 
274692a
57ca96a
 
 
 
 
 
 
513a1f2
 
 
 
 
 
386c440
 
 
 
 
 
 
 
 
 
 
 
 
3388ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424d59
955c99b
 
 
 
 
 
 
 
 
 
 
513a1f2
 
 
 
 
 
 
 
 
 
 
3388ab8
 
 
513a1f2
 
3388ab8
955c99b
3388ab8
955c99b
513a1f2
 
 
 
 
3388ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386c440
17c5050
 
 
513a1f2
ed0fab0
513a1f2
3388ab8
6282a14
3388ab8
6282a14
3388ab8
513a1f2
 
3388ab8
6282a14
17c5050
 
 
 
 
 
513a1f2
 
6282a14
3388ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c5050
 
 
 
 
3388ab8
 
 
 
 
 
 
 
 
10a4c8e
513a1f2
 
 
 
10a4c8e
513a1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955c99b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""
DeepFunding Oracle:
This script dynamically loads dependency data and for each repository URL:
  • Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API.
  • Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info)
    and returns a base weight (0-1) for the repository.
  • Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight.
The output submission CSV has three columns: repo, parent, and final_weight.
"""
import base64
from io import StringIO
import os
import warnings
import csv
import re
import requests
import numpy as np
import pandas as pd
import time
import threading
import logging
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import signal
from tqdm import tqdm
import sys
import re
import json
import time

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns

from Oracle.SmolLM import SmolLM

warnings.filterwarnings("ignore")

# Configure logging to file and console
logging.basicConfig(
    handlers=[
        logging.FileHandler("deepfundingoracle.log"),
        logging.StreamHandler(sys.stdout)
    ],
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

##############################
#  GitHub API helper: Fetch repository metrics
##############################
def fetch_repo_metrics(repo_url):
    """
    Fetch GitHub metrics (stars, forks, watchers, open issues, pull requests, and activity) given a repository URL.
    """
    try:
        # Extract owner and repo name
        m = re.search(r"github\.com/([^/]+)/([^/]+)", repo_url)
        if not m:
            return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
        owner, repo_name = m.group(1), m.group(2)
        api_url = f"https://api.github.com/repos/{owner}/{repo_name}"
        headers = {}

        token = os.environ.get("GITHUB_API_TOKEN", "")
        if token: headers["Authorization"] = f"token {token}"
        r = requests.get(api_url, headers=headers)
        if r.status_code == 200:
            data = r.json()
            # Log fetched data for debugging
            print(f"[DEBUG] Fetched data for {repo_url}: {data}")
            pulls_url = data.get("pulls_url", "").replace("{/state}", "")
            pulls_count = len(requests.get(pulls_url, headers=headers).json()) if pulls_url else 0
            activity = data.get("updated_at", "")
            return {
                "stargazers_count": data.get("stargazers_count", 0),
                "forks_count": data.get("forks_count", 0),
                "watchers_count": data.get("watchers_count", 0),
                "open_issues_count": data.get("open_issues_count", 0),
                "pulls_count": pulls_count,
                "activity": activity,
                "owner": owner,
                "repo_name": repo_name,
                "token": token
            }
        else:
            print(f"[ERROR] Failed to fetch data for {repo_url}: {r.status_code}")
            return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
    except Exception as e:
        print(f"[ERROR] Exception while fetching data for {repo_url}: {e}")
        return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}


##############################
#  Feature Extraction
##############################
def load_data(file):
    """
    Dynamically load the dependency data CSV from the uploaded file.
    Expects at least "repo" and "parent" columns.
    """
    try:
        print("[INFO] Loading data from uploaded file...")
        start_time = time.time()
        # Read the uploaded file directly into a DataFrame
        df = pd.read_csv(file)
        end_time = time.time()
        print(f"[INFO] Data loaded successfully in {end_time - start_time:.2f} seconds.")
        return df
    except Exception as e:
        print("[ERROR] Error loading data:", e)
        return None

def fetch_github_features(df):
    """
    For each row, using the repo URL, call the GitHub API to fetch:
      stars, forks, watchers, open issues, pull requests, activity, and contributors count.
    Adds these as new columns to the DataFrame.
    """
    print("[INFO] Fetching GitHub features for repositories...")
    start_time = time.time()
    stars_list = []
    forks_list = []
    watchers_list = []
    issues_list = []
    pulls_list = []
    activity_list = []
    contributors_list = []
    dependencies_list =[]

    cache = {}

    def get_metrics(repo_url):
        if repo_url in cache:
            print(f"[DEBUG] Cached data for {repo_url}: {cache[repo_url]}")
            return cache[repo_url]
        val = fetch_repo_metrics(repo_url)
        print(f"[DEBUG] Extracted GitHub data for {repo_url}: {val}")  # <-- Add this line
        try:
            m = re.search(r"github\.com/([^/]+)/([^/]+)",repo_url)
            if m:
                owner, repo_name = m.group(1), m.group(2)
                pkg_url = f"https://api.github.com/repos/{owner}/{repo_name}/packages.json"
                headers = {}
                token = os.environ.get("GITHUB_API_TOKEN", "")
                if token:
                    headers["Authorization"] = f"token {token}"
                pkg_resp = requests.get(pkg_url, headers=headers)
                if pkg_resp.status_code ==200:
                    pkg_data = pkg_resp.json()
                    content = base64.b64decode(pkg_data["content",""]).decode("utf-8")
                    pkg_json = json.loads(content)
                    dependencies = pkg_json.get("dependencies", {})
                    val["dependencies_count"] = len(dependencies)
                else:
                    val["dependencies_count"] = 0
            else:
                val["dependencies_count"] = 0
        except Exception:
            val["dependencies_count"] = 0
        cache[repo_url] = val
        return val

    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()}
        for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"):
            res = fut.result()
            stars_list.append(res.get("stargazers_count", 0))
            forks_list.append(res.get("forks_count", 0))
            watchers_list.append(res.get("watchers_count", 0))
            issues_list.append(res.get("open_issues_count", 0))
            pulls_list.append(res.get("pulls_count", 0))
            activity_list.append(res.get("activity", 0))
            dependencies_list.append(res.get("dependencies_count", 0))
            # Fetch contributors count
            try:
                contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors"
                headers = {"Authorization": f"token {res['token']}"}
                contributors_response = requests.get(contributors_url, headers=headers)
                if contributors_response.status_code == 200:
                    contributors_list.append(len(contributors_response.json()))
                else:
                    contributors_list.append(0)
            except Exception:
                contributors_list.append(0)

    df["stars"] = stars_list
    df["forks"] = forks_list
    df["watchers"] = watchers_list
    df["open_issues"] = issues_list
    df["pulls"] = pulls_list
    df["activity"] = activity_list
    df["contributors"] = contributors_list
    df["dependencies_count"] = dependencies_list

    end_time = time.time()
    print(f"[INFO] GitHub features fetched successfully in {end_time - start_time:.2f} seconds.")
    return df

def timeout_handler(signum, frame):
    raise TimeoutError("LLama model prediction timed out.")

def assign_base_weight(df, max_workers=32, llm_retries=2, llm_delay=0):
    """
    Assign base weights using a single LLM call to determine feature weights,
    and programmatically calculate repository weights.
    """
    print("[INFO] Starting optimized base weight assignment...", flush=True)
    logging.info("[INFO] Assigning base weights using optimized approach...")
    start_time = time.time()
    oracle = SmolLM()

    prompt = (
        "Can you Predict a weight in the range (0-1) for these GitHub features such as stars, forks, watchers, "
        "open_issues, pulls, activity, contributors based on their importance in determining the influence of a repository? "
        "Output the weights for each feature as text e.g.: "
        'stars: 0.3, forks: 0.2, watchers: 0.2, open_issues: 0.1, pulls: 0.1, activity: 0.05, contributors: 0.05'
    )
    feature_weights = None
    for attempt in range(llm_retries):
        try:
            response = oracle.predict(prompt, max_length=512, max_new_tokens=150)
            if not response or not response.strip():
                raise ValueError("Empty response from Oracle.")
            matches = re.findall(
                r'(stars|forks|watchers|open_issues|pulls|activity|contributors)\s*[:=]\s*([0-9]*\.?[0-9]+)',
                response, re.IGNORECASE)
            feature_weights = {k.lower(): float(v) for k, v in matches}
            if not feature_weights or len(feature_weights) < 7:
                raise ValueError("Could not extract all feature weights from response.")
            print(f"[INFO] Feature weights from LLM: {feature_weights}", flush=True)
            break
        except Exception as e:
            print(f"[ERROR] Oracle attempt {attempt+1} failed: {e}", flush=True)
            logging.error(f"[ERROR] Oracle attempt {attempt+1} failed: {e}")
            time.sleep(llm_delay)

    # Fallback mechanism: Calculate feature weights dynamically if LLM fails
    if feature_weights is None:
        print("[WARN] LLM failed to provide feature weights. Calculating fallback weights dynamically.")
        feature_weights = calculate_fallback_weights(df)
        print(f"[INFO] Fallback feature weights: {feature_weights}", flush=True)

    # Ensure numeric columns are properly formatted
    for feature in feature_weights.keys():
        if feature in df.columns:
            df[feature] = pd.to_numeric(df[feature], errors='coerce').fillna(0)

    def calculate_weight(row):
        weight = 0
        for feature, feature_weight in feature_weights.items():
            if feature in row:
                weight += row[feature] * feature_weight
        return weight

    df["base_weight_raw"] = df.apply(calculate_weight, axis=1)
    df["base_weight"] = df.groupby("parent")["base_weight_raw"].transform(
        lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1)
    )

    end_time = time.time()
    print(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.", flush=True)
    logging.info(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.")
    return df

def calculate_fallback_weights(df):
    """
    Dynamically calculate fallback feature weights based on feature variance and correlation with the target.
    """
    print("[INFO] Calculating fallback feature weights...")
    numeric_cols = df.select_dtypes(include=[np.number]).columns
    feature_variances = df[numeric_cols].var()
    total_variance = feature_variances.sum()

    # Assign weights proportional to feature variance
    fallback_weights = {col: var / total_variance for col, var in feature_variances.items() if total_variance > 0}
    return fallback_weights

def sanity_check_weights(df):
    """
    Sanity-checks LLM weights by comparing them with other metrics.
    """
    print("[INFO] Performing sanity check on LLM weights...")
    df["sanity_check_weight"] = (df["stars"] + df["forks"] + df["watchers"]) / 3
    df["ensemble_weight"] = (df["base_weight"] + df["sanity_check_weight"]) / 2
    print("[INFO] Sanity check and ensemble weights added.")
    return df

def visualize_feature_distributions(df):
    """
    Visualizes feature distributions and correlations.
    """
    print("[INFO] Visualizing feature distributions and correlations...")
    numeric_cols = df.select_dtypes(include=[np.number]).columns

    # Plot feature distributions
    df[numeric_cols].hist(bins=20, figsize=(15, 10), color="skyblue", edgecolor="black")
    plt.suptitle("Feature Distributions", fontsize=16)
    plt.show()

    # Plot feature correlations
    correlation_matrix = df[numeric_cols].corr()
    plt.figure(figsize=(12, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
    plt.title("Feature Correlation Matrix", fontsize=16)
    plt.show()

def normalize_funding(df):
    """
    Normalize funding weights for child repositories grouped by parent.
    """
    print("[INFO] Normalizing funding weights...", flush=True)
    df["final_weight"] = df.groupby("parent")["final_weight"].transform(
        lambda x: x / x.sum() if x.sum() > 0 else 1 / len(x)
    )
    print("[INFO] Funding weights normalized successfully.", flush=True)
    return df

def prepare_dataset(file):
    print("[INFO] Starting dataset preparation...")
    start_time = time.time()
    df = load_data(file)
    if df is None:
        raise ValueError("Failed to load data.")
    if not {"repo", "parent"}.issubset(df.columns):
        raise ValueError("Input CSV must contain 'repo' and 'parent' columns.")
    print("[INFO] Fetching GitHub features...")
    df = fetch_github_features(df)
    print("[INFO] GitHub features fetched successfully.")
    print("[INFO] Cleaning data...")
    df = clean_data(df)
    print("[INFO] Data cleaned successfully.")
    print("[INFO] Assigning base weights using LLama model...")
    df = assign_base_weight(df)
    df = sanity_check_weights(df)  # Add sanity-check and ensemble weights
    df = train_predict_weight(df)
    visualize_feature_distributions(df)  # Add feature visualization
    df = normalize_funding(df)
    end_time = time.time()
    print(f"[INFO] Dataset preparation completed in {end_time - start_time:.2f} seconds.")
    return df


##############################
#  Data Cleaning
##############################
def clean_data(df):
    """
    Cleans the input DataFrame by handling missing values and removing outliers.
    """
    # Impute missing values
    df.fillna(df.median(numeric_only=True), inplace=True)

    # Remove extreme outliers using quantiles
    for col in df.select_dtypes(include=[np.number]).columns:
        q1 = df[col].quantile(0.25)
        q3 = df[col].quantile(0.75)
        iqr = q3 - q1
        lower_bound = q1 - 1.5 * iqr
        upper_bound = q3 + 1.5 * iqr
        df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]

    return df


##############################
#  Feature Validation and Scaling
##############################
def validate_features(df):
    """
    Validates and scales features to ensure they are meaningful for model training.
    """
    print("[INFO] Validating and scaling features...")
    numeric_cols = df.select_dtypes(include=[np.number]).columns
    scaler = StandardScaler()

    # Log feature distributions
    for col in numeric_cols:
        print(f"[DEBUG] Feature '{col}' - Mean: {df[col].mean()}, Std: {df[col].std()}, Min: {df[col].min()}, Max: {df[col].max()}")

    # Scale numeric features
    df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
    print("[INFO] Features scaled successfully.")
    return df

def validate_target(df):
    """
    Validates the target variable to ensure it has sufficient variance.
    """
    print("[INFO] Validating target variable 'base_weight'...")
    target = "base_weight"
    if target not in df.columns:
        raise ValueError(f"Target variable '{target}' not found in DataFrame.")

    variance = df[target].var()
    print(f"[DEBUG] Target variable variance: {variance}")
    if variance < 1e-6:
        raise ValueError(f"Target variable '{target}' has insufficient variance. Please check feature values.")
    return df


##############################
#  RandomForest Regression
##############################
def train_predict_weight(df):
    """
    Trains a RandomForestRegressor with hyperparameter tuning and evaluates the model.
    """
    print("[INFO] Starting weight prediction with hyperparameter tuning...", flush=True)
    start_time = time.time()
    target = "base_weight"
    feature_cols = [col for col in df.columns if col not in ["repo", "parent", "base_weight", "final_weight"]]

    # Validate and scale features
    df = validate_features(df)

    # Validate target variable
    df = validate_target(df)

    X = df[feature_cols]
    y = df[target]

    # Split data into train/test sets
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Hyperparameter tuning using GridSearchCV
    param_grid = {
        "n_estimators": [100, 200, 300],
        "max_depth": [10, 15, 20],
        "min_samples_split": [2, 5, 10],
        "min_samples_leaf": [1, 2, 4]
    }
    rf = RandomForestRegressor(random_state=42)
    grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=3, scoring="neg_mean_squared_error", verbose=2)
    grid_search.fit(X_train, y_train)

    # Best model
    best_rf = grid_search.best_estimator_
    print(f"[INFO] Best parameters: {grid_search.best_params_}")

    # Evaluate on test set
    y_pred = best_rf.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print(f"[INFO] Test MSE: {mse}")

    # Feature importance analysis
    feature_importances = best_rf.feature_importances_
    importance_df = pd.DataFrame({"Feature": feature_cols, "Importance": feature_importances}).sort_values(by="Importance", ascending=False)
    print("[INFO] Feature importances:")
    print(importance_df)

    # Drop irrelevant features
    irrelevant_features = importance_df[importance_df["Importance"] < 0.01]["Feature"].tolist()
    print(f"[INFO] Dropping irrelevant features: {irrelevant_features}")
    df.drop(columns=irrelevant_features, inplace=True)

    # Plot predictions vs. actual values
    plt.scatter(y_test, y_pred, alpha=0.5)
    plt.xlabel("Actual Base Weight")
    plt.ylabel("Predicted Base Weight")
    plt.title("Predictions vs. Actual")
    plt.show()

    # Assign predictions to DataFrame
    df["final_weight"] = best_rf.predict(X)

    end_time = time.time()
    print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True)
    return df


##############################
# CSV Output
##############################
def create_submission_csv(df, output_filename="submission.csv"):
    print(f"[INFO] Writing results to {output_filename}...", flush=True)
    required_cols = ["repo", "parent", "final_weight"]
    submission_df = df[required_cols]
    submission_df.to_csv(output_filename, index=False)
    print(f"[INFO] Results written to {output_filename}.", flush=True)
    return output_filename

# Removed Gradio UI code from this file to ensure modular workflow.
# This file now focuses solely on data processing and prediction.

if __name__ == "__main__":
    input_file = "input.csv"  # Replace with the actual input file path
    output_file = "submission.csv"

    print("[INFO] Preparing dataset...")
    df = prepare_dataset(input_file)

    print("[INFO] Creating submission CSV...")
    create_submission_csv(df, output_file)
    print("[INFO] Process completed successfully.")