Spaces:
Running
Running
File size: 19,896 Bytes
513a1f2 6282a14 513a1f2 dc9d402 513a1f2 16532e0 274692a e8254b1 513a1f2 3388ab8 513a1f2 17c5050 3388ab8 513a1f2 ed0fab0 513a1f2 386c440 513a1f2 386c440 513a1f2 386c440 513a1f2 ed0fab0 513a1f2 6282a14 513a1f2 3868d8d 513a1f2 3868d8d 386c440 3868d8d 386c440 6282a14 afb6533 6282a14 3868d8d 6282a14 3868d8d 513a1f2 6282a14 513a1f2 2424d59 dc9d402 57ca96a dc9d402 57ca96a 513a1f2 93f0901 57ca96a 386c440 2424d59 57ca96a 2424d59 e8254b1 2424d59 93f0901 2424d59 e8254b1 93f0901 e8254b1 386c440 93f0901 386c440 57ca96a 386c440 274692a 57ca96a 274692a 57ca96a 513a1f2 386c440 3388ab8 2424d59 955c99b 513a1f2 3388ab8 513a1f2 3388ab8 955c99b 3388ab8 955c99b 513a1f2 3388ab8 17c5050 386c440 17c5050 513a1f2 ed0fab0 513a1f2 3388ab8 6282a14 3388ab8 6282a14 3388ab8 513a1f2 3388ab8 6282a14 17c5050 513a1f2 6282a14 3388ab8 17c5050 3388ab8 10a4c8e 513a1f2 10a4c8e 513a1f2 955c99b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
"""
DeepFunding Oracle:
This script dynamically loads dependency data and for each repository URL:
• Fetches GitHub features (stars, forks, watchers, open issues, pull requests, activity) using the GitHub API.
• Uses the LLama model to analyze parent-child behavior (based on the fetched features and parent info)
and returns a base weight (0-1) for the repository.
• Trains a RandomForest regressor on these features (with the base weight as the target) to predict a final weight.
The output submission CSV has three columns: repo, parent, and final_weight.
"""
import base64
from io import StringIO
import os
import warnings
import csv
import re
import requests
import numpy as np
import pandas as pd
import time
import threading
import logging
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import signal
from tqdm import tqdm
import sys
import re
import json
import time
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
from Oracle.SmolLM import SmolLM
warnings.filterwarnings("ignore")
# Configure logging to file and console
logging.basicConfig(
handlers=[
logging.FileHandler("deepfundingoracle.log"),
logging.StreamHandler(sys.stdout)
],
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
##############################
# GitHub API helper: Fetch repository metrics
##############################
def fetch_repo_metrics(repo_url):
"""
Fetch GitHub metrics (stars, forks, watchers, open issues, pull requests, and activity) given a repository URL.
"""
try:
# Extract owner and repo name
m = re.search(r"github\.com/([^/]+)/([^/]+)", repo_url)
if not m:
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
owner, repo_name = m.group(1), m.group(2)
api_url = f"https://api.github.com/repos/{owner}/{repo_name}"
headers = {}
token = os.environ.get("GITHUB_API_TOKEN", "")
if token: headers["Authorization"] = f"token {token}"
r = requests.get(api_url, headers=headers)
if r.status_code == 200:
data = r.json()
# Log fetched data for debugging
print(f"[DEBUG] Fetched data for {repo_url}: {data}")
pulls_url = data.get("pulls_url", "").replace("{/state}", "")
pulls_count = len(requests.get(pulls_url, headers=headers).json()) if pulls_url else 0
activity = data.get("updated_at", "")
return {
"stargazers_count": data.get("stargazers_count", 0),
"forks_count": data.get("forks_count", 0),
"watchers_count": data.get("watchers_count", 0),
"open_issues_count": data.get("open_issues_count", 0),
"pulls_count": pulls_count,
"activity": activity,
"owner": owner,
"repo_name": repo_name,
"token": token
}
else:
print(f"[ERROR] Failed to fetch data for {repo_url}: {r.status_code}")
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
except Exception as e:
print(f"[ERROR] Exception while fetching data for {repo_url}: {e}")
return {"stargazers_count": 0, "forks_count": 0, "watchers_count": 0, "open_issues_count": 0, "pulls_count": 0, "activity": 0}
##############################
# Feature Extraction
##############################
def load_data(file):
"""
Dynamically load the dependency data CSV from the uploaded file.
Expects at least "repo" and "parent" columns.
"""
try:
print("[INFO] Loading data from uploaded file...")
start_time = time.time()
# Read the uploaded file directly into a DataFrame
df = pd.read_csv(file)
end_time = time.time()
print(f"[INFO] Data loaded successfully in {end_time - start_time:.2f} seconds.")
return df
except Exception as e:
print("[ERROR] Error loading data:", e)
return None
def fetch_github_features(df):
"""
For each row, using the repo URL, call the GitHub API to fetch:
stars, forks, watchers, open issues, pull requests, activity, and contributors count.
Adds these as new columns to the DataFrame.
"""
print("[INFO] Fetching GitHub features for repositories...")
start_time = time.time()
stars_list = []
forks_list = []
watchers_list = []
issues_list = []
pulls_list = []
activity_list = []
contributors_list = []
dependencies_list =[]
cache = {}
def get_metrics(repo_url):
if repo_url in cache:
print(f"[DEBUG] Cached data for {repo_url}: {cache[repo_url]}")
return cache[repo_url]
val = fetch_repo_metrics(repo_url)
print(f"[DEBUG] Extracted GitHub data for {repo_url}: {val}") # <-- Add this line
try:
m = re.search(r"github\.com/([^/]+)/([^/]+)",repo_url)
if m:
owner, repo_name = m.group(1), m.group(2)
pkg_url = f"https://api.github.com/repos/{owner}/{repo_name}/packages.json"
headers = {}
token = os.environ.get("GITHUB_API_TOKEN", "")
if token:
headers["Authorization"] = f"token {token}"
pkg_resp = requests.get(pkg_url, headers=headers)
if pkg_resp.status_code ==200:
pkg_data = pkg_resp.json()
content = base64.b64decode(pkg_data["content",""]).decode("utf-8")
pkg_json = json.loads(content)
dependencies = pkg_json.get("dependencies", {})
val["dependencies_count"] = len(dependencies)
else:
val["dependencies_count"] = 0
else:
val["dependencies_count"] = 0
except Exception:
val["dependencies_count"] = 0
cache[repo_url] = val
return val
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()}
for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"):
res = fut.result()
stars_list.append(res.get("stargazers_count", 0))
forks_list.append(res.get("forks_count", 0))
watchers_list.append(res.get("watchers_count", 0))
issues_list.append(res.get("open_issues_count", 0))
pulls_list.append(res.get("pulls_count", 0))
activity_list.append(res.get("activity", 0))
dependencies_list.append(res.get("dependencies_count", 0))
# Fetch contributors count
try:
contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors"
headers = {"Authorization": f"token {res['token']}"}
contributors_response = requests.get(contributors_url, headers=headers)
if contributors_response.status_code == 200:
contributors_list.append(len(contributors_response.json()))
else:
contributors_list.append(0)
except Exception:
contributors_list.append(0)
df["stars"] = stars_list
df["forks"] = forks_list
df["watchers"] = watchers_list
df["open_issues"] = issues_list
df["pulls"] = pulls_list
df["activity"] = activity_list
df["contributors"] = contributors_list
df["dependencies_count"] = dependencies_list
end_time = time.time()
print(f"[INFO] GitHub features fetched successfully in {end_time - start_time:.2f} seconds.")
return df
def timeout_handler(signum, frame):
raise TimeoutError("LLama model prediction timed out.")
def assign_base_weight(df, max_workers=32, llm_retries=2, llm_delay=0):
"""
Assign base weights using a single LLM call to determine feature weights,
and programmatically calculate repository weights.
"""
print("[INFO] Starting optimized base weight assignment...", flush=True)
logging.info("[INFO] Assigning base weights using optimized approach...")
start_time = time.time()
oracle = SmolLM()
prompt = (
"Can you Predict a weight in the range (0-1) for these GitHub features such as stars, forks, watchers, "
"open_issues, pulls, activity, contributors based on their importance in determining the influence of a repository? "
"Output the weights for each feature as text e.g.: "
'stars: 0.3, forks: 0.2, watchers: 0.2, open_issues: 0.1, pulls: 0.1, activity: 0.05, contributors: 0.05'
)
feature_weights = None
for attempt in range(llm_retries):
try:
response = oracle.predict(prompt, max_length=512, max_new_tokens=150)
if not response or not response.strip():
raise ValueError("Empty response from Oracle.")
matches = re.findall(
r'(stars|forks|watchers|open_issues|pulls|activity|contributors)\s*[:=]\s*([0-9]*\.?[0-9]+)',
response, re.IGNORECASE)
feature_weights = {k.lower(): float(v) for k, v in matches}
if not feature_weights or len(feature_weights) < 7:
raise ValueError("Could not extract all feature weights from response.")
print(f"[INFO] Feature weights from LLM: {feature_weights}", flush=True)
break
except Exception as e:
print(f"[ERROR] Oracle attempt {attempt+1} failed: {e}", flush=True)
logging.error(f"[ERROR] Oracle attempt {attempt+1} failed: {e}")
time.sleep(llm_delay)
# Fallback mechanism: Calculate feature weights dynamically if LLM fails
if feature_weights is None:
print("[WARN] LLM failed to provide feature weights. Calculating fallback weights dynamically.")
feature_weights = calculate_fallback_weights(df)
print(f"[INFO] Fallback feature weights: {feature_weights}", flush=True)
# Ensure numeric columns are properly formatted
for feature in feature_weights.keys():
if feature in df.columns:
df[feature] = pd.to_numeric(df[feature], errors='coerce').fillna(0)
def calculate_weight(row):
weight = 0
for feature, feature_weight in feature_weights.items():
if feature in row:
weight += row[feature] * feature_weight
return weight
df["base_weight_raw"] = df.apply(calculate_weight, axis=1)
df["base_weight"] = df.groupby("parent")["base_weight_raw"].transform(
lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1)
)
end_time = time.time()
print(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.", flush=True)
logging.info(f"[INFO] Base weights assigned successfully in {end_time - start_time:.2f} seconds.")
return df
def calculate_fallback_weights(df):
"""
Dynamically calculate fallback feature weights based on feature variance and correlation with the target.
"""
print("[INFO] Calculating fallback feature weights...")
numeric_cols = df.select_dtypes(include=[np.number]).columns
feature_variances = df[numeric_cols].var()
total_variance = feature_variances.sum()
# Assign weights proportional to feature variance
fallback_weights = {col: var / total_variance for col, var in feature_variances.items() if total_variance > 0}
return fallback_weights
def sanity_check_weights(df):
"""
Sanity-checks LLM weights by comparing them with other metrics.
"""
print("[INFO] Performing sanity check on LLM weights...")
df["sanity_check_weight"] = (df["stars"] + df["forks"] + df["watchers"]) / 3
df["ensemble_weight"] = (df["base_weight"] + df["sanity_check_weight"]) / 2
print("[INFO] Sanity check and ensemble weights added.")
return df
def visualize_feature_distributions(df):
"""
Visualizes feature distributions and correlations.
"""
print("[INFO] Visualizing feature distributions and correlations...")
numeric_cols = df.select_dtypes(include=[np.number]).columns
# Plot feature distributions
df[numeric_cols].hist(bins=20, figsize=(15, 10), color="skyblue", edgecolor="black")
plt.suptitle("Feature Distributions", fontsize=16)
plt.show()
# Plot feature correlations
correlation_matrix = df[numeric_cols].corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Matrix", fontsize=16)
plt.show()
def normalize_funding(df):
"""
Normalize funding weights for child repositories grouped by parent.
"""
print("[INFO] Normalizing funding weights...", flush=True)
df["final_weight"] = df.groupby("parent")["final_weight"].transform(
lambda x: x / x.sum() if x.sum() > 0 else 1 / len(x)
)
print("[INFO] Funding weights normalized successfully.", flush=True)
return df
def prepare_dataset(file):
print("[INFO] Starting dataset preparation...")
start_time = time.time()
df = load_data(file)
if df is None:
raise ValueError("Failed to load data.")
if not {"repo", "parent"}.issubset(df.columns):
raise ValueError("Input CSV must contain 'repo' and 'parent' columns.")
print("[INFO] Fetching GitHub features...")
df = fetch_github_features(df)
print("[INFO] GitHub features fetched successfully.")
print("[INFO] Cleaning data...")
df = clean_data(df)
print("[INFO] Data cleaned successfully.")
print("[INFO] Assigning base weights using LLama model...")
df = assign_base_weight(df)
df = sanity_check_weights(df) # Add sanity-check and ensemble weights
df = train_predict_weight(df)
visualize_feature_distributions(df) # Add feature visualization
df = normalize_funding(df)
end_time = time.time()
print(f"[INFO] Dataset preparation completed in {end_time - start_time:.2f} seconds.")
return df
##############################
# Data Cleaning
##############################
def clean_data(df):
"""
Cleans the input DataFrame by handling missing values and removing outliers.
"""
# Impute missing values
df.fillna(df.median(numeric_only=True), inplace=True)
# Remove extreme outliers using quantiles
for col in df.select_dtypes(include=[np.number]).columns:
q1 = df[col].quantile(0.25)
q3 = df[col].quantile(0.75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
df = df[(df[col] >= lower_bound) & (df[col] <= upper_bound)]
return df
##############################
# Feature Validation and Scaling
##############################
def validate_features(df):
"""
Validates and scales features to ensure they are meaningful for model training.
"""
print("[INFO] Validating and scaling features...")
numeric_cols = df.select_dtypes(include=[np.number]).columns
scaler = StandardScaler()
# Log feature distributions
for col in numeric_cols:
print(f"[DEBUG] Feature '{col}' - Mean: {df[col].mean()}, Std: {df[col].std()}, Min: {df[col].min()}, Max: {df[col].max()}")
# Scale numeric features
df[numeric_cols] = scaler.fit_transform(df[numeric_cols])
print("[INFO] Features scaled successfully.")
return df
def validate_target(df):
"""
Validates the target variable to ensure it has sufficient variance.
"""
print("[INFO] Validating target variable 'base_weight'...")
target = "base_weight"
if target not in df.columns:
raise ValueError(f"Target variable '{target}' not found in DataFrame.")
variance = df[target].var()
print(f"[DEBUG] Target variable variance: {variance}")
if variance < 1e-6:
raise ValueError(f"Target variable '{target}' has insufficient variance. Please check feature values.")
return df
##############################
# RandomForest Regression
##############################
def train_predict_weight(df):
"""
Trains a RandomForestRegressor with hyperparameter tuning and evaluates the model.
"""
print("[INFO] Starting weight prediction with hyperparameter tuning...", flush=True)
start_time = time.time()
target = "base_weight"
feature_cols = [col for col in df.columns if col not in ["repo", "parent", "base_weight", "final_weight"]]
# Validate and scale features
df = validate_features(df)
# Validate target variable
df = validate_target(df)
X = df[feature_cols]
y = df[target]
# Split data into train/test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Hyperparameter tuning using GridSearchCV
param_grid = {
"n_estimators": [100, 200, 300],
"max_depth": [10, 15, 20],
"min_samples_split": [2, 5, 10],
"min_samples_leaf": [1, 2, 4]
}
rf = RandomForestRegressor(random_state=42)
grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=3, scoring="neg_mean_squared_error", verbose=2)
grid_search.fit(X_train, y_train)
# Best model
best_rf = grid_search.best_estimator_
print(f"[INFO] Best parameters: {grid_search.best_params_}")
# Evaluate on test set
y_pred = best_rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"[INFO] Test MSE: {mse}")
# Feature importance analysis
feature_importances = best_rf.feature_importances_
importance_df = pd.DataFrame({"Feature": feature_cols, "Importance": feature_importances}).sort_values(by="Importance", ascending=False)
print("[INFO] Feature importances:")
print(importance_df)
# Drop irrelevant features
irrelevant_features = importance_df[importance_df["Importance"] < 0.01]["Feature"].tolist()
print(f"[INFO] Dropping irrelevant features: {irrelevant_features}")
df.drop(columns=irrelevant_features, inplace=True)
# Plot predictions vs. actual values
plt.scatter(y_test, y_pred, alpha=0.5)
plt.xlabel("Actual Base Weight")
plt.ylabel("Predicted Base Weight")
plt.title("Predictions vs. Actual")
plt.show()
# Assign predictions to DataFrame
df["final_weight"] = best_rf.predict(X)
end_time = time.time()
print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True)
return df
##############################
# CSV Output
##############################
def create_submission_csv(df, output_filename="submission.csv"):
print(f"[INFO] Writing results to {output_filename}...", flush=True)
required_cols = ["repo", "parent", "final_weight"]
submission_df = df[required_cols]
submission_df.to_csv(output_filename, index=False)
print(f"[INFO] Results written to {output_filename}.", flush=True)
return output_filename
# Removed Gradio UI code from this file to ensure modular workflow.
# This file now focuses solely on data processing and prediction.
if __name__ == "__main__":
input_file = "input.csv" # Replace with the actual input file path
output_file = "submission.csv"
print("[INFO] Preparing dataset...")
df = prepare_dataset(input_file)
print("[INFO] Creating submission CSV...")
create_submission_csv(df, output_file)
print("[INFO] Process completed successfully.")
|