Spaces:
Sleeping
Sleeping
Commit
·
3868d8d
1
Parent(s):
6a89c42
Oracle
Browse files- Oracle/deepfundingoracle.py +66 -46
Oracle/deepfundingoracle.py
CHANGED
@@ -25,7 +25,7 @@ from tqdm import tqdm
|
|
25 |
import sys
|
26 |
import re
|
27 |
|
28 |
-
from sklearn.model_selection import train_test_split,
|
29 |
from sklearn.ensemble import RandomForestRegressor
|
30 |
from sklearn.metrics import mean_squared_error
|
31 |
|
@@ -121,28 +121,37 @@ def fetch_github_features(df):
|
|
121 |
activity_list = []
|
122 |
contributors_list = []
|
123 |
|
124 |
-
|
125 |
-
repo_url = row.get("repo", "")
|
126 |
-
print(f"[INFO] Processing repository {idx + 1}/{len(df)}: {repo_url}")
|
127 |
-
features = fetch_repo_metrics(repo_url)
|
128 |
-
stars_list.append(features["stargazers_count"])
|
129 |
-
forks_list.append(features["forks_count"])
|
130 |
-
watchers_list.append(features["watchers_count"])
|
131 |
-
issues_list.append(features["open_issues_count"])
|
132 |
-
pulls_list.append(features["pulls_count"])
|
133 |
-
activity_list.append(features["activity"])
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
contributors_list.append(0)
|
144 |
-
except Exception:
|
145 |
-
contributors_list.append(0)
|
146 |
|
147 |
df["stars"] = stars_list
|
148 |
df["forks"] = forks_list
|
@@ -165,6 +174,7 @@ def assign_base_weight(df):
|
|
165 |
start_time = time.time()
|
166 |
llama = SmolLM()
|
167 |
base_weights = []
|
|
|
168 |
|
169 |
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Assigning weights"):
|
170 |
repo = row.get("repo", "")
|
@@ -186,19 +196,23 @@ def assign_base_weight(df):
|
|
186 |
"Only output the numeric value."
|
187 |
)
|
188 |
try:
|
189 |
-
|
190 |
-
|
191 |
-
response = llama.predict(prompt)
|
192 |
-
# Use regex to extract the first valid float from the response
|
193 |
-
match = re.search(r"[-+]?\d*\.\d+|\d+", response)
|
194 |
-
if match:
|
195 |
-
weight = float(match.group())
|
196 |
-
weight = min(max(weight, 0), 1)
|
197 |
else:
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
except Exception as e:
|
203 |
print(f"[ERROR] Failed to process repository {repo}: {e}", flush=True)
|
204 |
logging.error(f"[ERROR] Failed to process repository {repo}: {e}")
|
@@ -250,28 +264,34 @@ def train_predict_weight(df):
|
|
250 |
print("[INFO] Splitting data into training and testing sets...", flush=True)
|
251 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
252 |
rf_model = RandomForestRegressor(random_state=42, max_depth=None)
|
253 |
-
|
254 |
"n_estimators": [100, 200, 300],
|
255 |
-
"max_depth": [None], # Only allow unlimited depth
|
256 |
"min_samples_split": [2, 5, 10],
|
257 |
"min_samples_leaf": [1, 2, 4]
|
258 |
}
|
259 |
-
print("[INFO] Performing
|
260 |
-
|
261 |
estimator=rf_model,
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
265 |
)
|
266 |
-
|
267 |
-
print("[INFO]
|
268 |
-
print("Best Parameters:",
|
269 |
-
print("Best MSE:", -
|
270 |
-
y_pred =
|
271 |
mse = mean_squared_error(y_test, y_pred)
|
272 |
print("Final RF Test MSE:", mse, flush=True)
|
273 |
print("[INFO] Predicting final weights for all rows...")
|
274 |
-
df["
|
|
|
|
|
|
|
|
|
275 |
end_time = time.time()
|
276 |
print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True)
|
277 |
return df
|
|
|
25 |
import sys
|
26 |
import re
|
27 |
|
28 |
+
from sklearn.model_selection import train_test_split, RandomizedSearchCV
|
29 |
from sklearn.ensemble import RandomForestRegressor
|
30 |
from sklearn.metrics import mean_squared_error
|
31 |
|
|
|
121 |
activity_list = []
|
122 |
contributors_list = []
|
123 |
|
124 |
+
cache = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
def get_metrics(repo_url):
|
127 |
+
if repo_url in cache:
|
128 |
+
return cache[repo_url]
|
129 |
+
val = fetch_repo_metrics(repo_url)
|
130 |
+
cache[repo_url] = val
|
131 |
+
return val
|
132 |
+
|
133 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
|
134 |
+
futures = {executor.submit(get_metrics, row['repo']): i for i, row in df.iterrows()}
|
135 |
+
for fut in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Fetching metrics"):
|
136 |
+
res = fut.result()
|
137 |
+
stars_list.append(res["stargazers_count"])
|
138 |
+
forks_list.append(res["forks_count"])
|
139 |
+
watchers_list.append(res["watchers_count"])
|
140 |
+
issues_list.append(res["open_issues_count"])
|
141 |
+
pulls_list.append(res["pulls_count"])
|
142 |
+
activity_list.append(res["activity"])
|
143 |
+
|
144 |
+
# Fetch contributors count
|
145 |
+
try:
|
146 |
+
contributors_url = f"https://api.github.com/repos/{res['owner']}/{res['repo_name']}/contributors"
|
147 |
+
headers = {"Authorization": f"token {res['token']}"}
|
148 |
+
contributors_response = requests.get(contributors_url, headers=headers)
|
149 |
+
if contributors_response.status_code == 200:
|
150 |
+
contributors_list.append(len(contributors_response.json()))
|
151 |
+
else:
|
152 |
+
contributors_list.append(0)
|
153 |
+
except Exception:
|
154 |
contributors_list.append(0)
|
|
|
|
|
155 |
|
156 |
df["stars"] = stars_list
|
157 |
df["forks"] = forks_list
|
|
|
174 |
start_time = time.time()
|
175 |
llama = SmolLM()
|
176 |
base_weights = []
|
177 |
+
llm_cache = {}
|
178 |
|
179 |
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Assigning weights"):
|
180 |
repo = row.get("repo", "")
|
|
|
196 |
"Only output the numeric value."
|
197 |
)
|
198 |
try:
|
199 |
+
if repo in llm_cache:
|
200 |
+
weight = llm_cache[repo]
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
else:
|
202 |
+
print(f"[INFO] Sending prompt to LLama model for repo: {repo}", flush=True)
|
203 |
+
start_llama_time = time.time()
|
204 |
+
response = llama.predict(prompt)
|
205 |
+
# Use regex to extract the first valid float from the response
|
206 |
+
match = re.search(r"[-+]?\d*\.\d+|\d+", response)
|
207 |
+
if match:
|
208 |
+
weight = float(match.group())
|
209 |
+
weight = min(max(weight, 0), 1)
|
210 |
+
else:
|
211 |
+
raise ValueError(f"No valid float found in response: {response}")
|
212 |
+
end_llama_time = time.time()
|
213 |
+
print(f"[INFO] Received weight {weight} for {repo} in {end_llama_time - start_llama_time:.2f} seconds.", flush=True)
|
214 |
+
logging.info(f"[INFO] Processed repository {repo} in {end_llama_time - start_llama_time:.2f} seconds. Weight: {weight}")
|
215 |
+
llm_cache[repo] = weight
|
216 |
except Exception as e:
|
217 |
print(f"[ERROR] Failed to process repository {repo}: {e}", flush=True)
|
218 |
logging.error(f"[ERROR] Failed to process repository {repo}: {e}")
|
|
|
264 |
print("[INFO] Splitting data into training and testing sets...", flush=True)
|
265 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
266 |
rf_model = RandomForestRegressor(random_state=42, max_depth=None)
|
267 |
+
param_dist = {
|
268 |
"n_estimators": [100, 200, 300],
|
|
|
269 |
"min_samples_split": [2, 5, 10],
|
270 |
"min_samples_leaf": [1, 2, 4]
|
271 |
}
|
272 |
+
print("[INFO] Performing randomized search for hyperparameter tuning...", flush=True)
|
273 |
+
rand_search = RandomizedSearchCV(
|
274 |
estimator=rf_model,
|
275 |
+
param_distributions=param_dist,
|
276 |
+
n_iter=20,
|
277 |
+
cv=3,
|
278 |
+
scoring="neg_mean_squared_error",
|
279 |
+
random_state=42,
|
280 |
+
error_score="raise"
|
281 |
)
|
282 |
+
rand_search.fit(X_train, y_train)
|
283 |
+
print("[INFO] Randomized search completed.", flush=True)
|
284 |
+
print("Best Parameters:", rand_search.best_params_, flush=True)
|
285 |
+
print("Best MSE:", -rand_search.best_score_, flush=True)
|
286 |
+
y_pred = rand_search.best_estimator_.predict(X_test)
|
287 |
mse = mean_squared_error(y_test, y_pred)
|
288 |
print("Final RF Test MSE:", mse, flush=True)
|
289 |
print("[INFO] Predicting final weights for all rows...")
|
290 |
+
df["final_weight_raw"] = rand_search.best_estimator_.predict(X)
|
291 |
+
# Normalize weights per parent for meaningful spread
|
292 |
+
df["final_weight"] = df.groupby("parent")["final_weight_raw"].transform(
|
293 |
+
lambda s: (s - s.min()) / (s.max() - s.min() if s.max() != s.min() else 1)
|
294 |
+
)
|
295 |
end_time = time.time()
|
296 |
print(f"[INFO] Weight prediction completed in {end_time - start_time:.2f} seconds.", flush=True)
|
297 |
return df
|