explainability-tool-for-aa / utils /interp_space_utils.py
Milad Alshomary
updates
ac7facf
import sys
import pandas as pd
import numpy as np
import math
from collections import Counter, defaultdict
from typing import List, Any
from sklearn.feature_extraction.text import TfidfVectorizer
import os
import pickle
import hashlib
import json
from gram2vec import vectorizer
from openai import OpenAI
from openai.lib._pydantic import to_strict_json_schema
from pydantic import BaseModel
from pydantic import ValidationError
import time
from utils.llm_feat_utils import generate_feature_spans_cached
from collections import Counter
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
CACHE_DIR = "datasets/embeddings_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
# Bump this whenever there is a change etc...
CACHE_VERSION = 1
class style_analysis_schema(BaseModel):
features: list[str]
spans: dict[str, dict[str, list[str]]]
class FeatureIdentificationSchema(BaseModel):
features: list[str]
class SpanExtractionSchema(BaseModel):
spans: dict[str, dict[str, list[str]]] # {author_name: {feature: [spans]}}
def compute_g2v_features(clustered_authors_df: pd.DataFrame, task_authors_df: pd.DataFrame=None, text_clm='fullText') -> pd.DataFrame:
"""
Computes gram2vec feature vectors for each author and adds them to the DataFrame.
This effectively creates a mapping from each author to their vector.
"""
if task_authors_df is not None:
print (f"concatenating task authors and background corpus authors")
print(f"Number of task authors: {len(task_authors_df)}")
print(f"task authors author_ids: {task_authors_df.authorID.tolist()}")
print(f"task authors -->")
print(task_authors_df)
print(f"Number of background corpus authors: {len(clustered_authors_df)}")
clustered_authors_df = pd.concat([task_authors_df, clustered_authors_df])
print(f"Number of authors after concatenation: {len(clustered_authors_df)}")
# Gather the input texts (preserves list-of-strings if any)
#texts = background_corpus_df[text_clm].fillna("").tolist()
author_texts = ['\n\n'.join(x) for x in clustered_authors_df.fullText.tolist()]
print(f"Number of author_texts: {len(author_texts)}")
# Create a reproducible JSON serialization of the texts
serialized = json.dumps({
"col": text_clm,
"texts": author_texts
}, sort_keys=True, ensure_ascii=False)
# Compute MD5 hash
digest = hashlib.md5(serialized.encode("utf-8")).hexdigest()
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl")
# If cache hit, load and return
if os.path.exists(cache_path):
print(f"Cache hit...")
with open(cache_path, "rb") as f:
clustered_authors_df = pickle.load(f)
else: # Else compute and cache
g2v_feats_df = vectorizer.from_documents(author_texts, batch_size=16)
print(f"Number of g2v features: {len(g2v_feats_df)}")
print(f"Number of clustered_authors_df.authorID.tolist(): {len(clustered_authors_df.authorID.tolist())}")
print(f"Number of g2v_feats_df.to_numpy().tolist(): {len(g2v_feats_df.to_numpy().tolist())}")
ids = clustered_authors_df.authorID.tolist()
counter = Counter(ids)
duplicates = [k for k, v in counter.items() if v > 1]
print(f"Duplicate authorIDs: {duplicates}")
print(f"Number of duplicates: {len(ids) - len(set(ids))}")
author_to_g2v_feats = {x[0]: x[1] for x in zip(clustered_authors_df.authorID.tolist(), g2v_feats_df.to_numpy().tolist())}
print(f"Number of authors with g2v features: {len(author_to_g2v_feats)}")
# apply normalization
vector_std = np.std(list(author_to_g2v_feats.values()), axis=0)
vector_mean = np.mean(list(author_to_g2v_feats.values()), axis=0)
vector_std[vector_std == 0] = 1.0
author_to_g2v_feats_z_normalized = {x[0]: (x[1] - vector_mean) / vector_std for x in author_to_g2v_feats.items()}
print(f"Number of authors with g2v features normalized: {len(author_to_g2v_feats_z_normalized)}")
print(f" len of clustered authors df: {len(clustered_authors_df)}")
# Add the vectors as a new column of the DataFrame.
clustered_authors_df['g2v_vector'] = [{x[1]: x[0] for x in zip(val, g2v_feats_df.columns.tolist())}
for val in author_to_g2v_feats_z_normalized.values()]
with open(cache_path, "wb") as f:
pickle.dump(clustered_authors_df, f)
if task_authors_df is not None:
task_authors_df = clustered_authors_df[clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())]
clustered_authors_df = clustered_authors_df[~clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())]
return clustered_authors_df['g2v_vector'].tolist(), task_authors_df['g2v_vector'].tolist()
def get_task_authors_from_background_df(background_df):
task_authors_df = background_df[background_df.authorID.isin(["Q_author", "a0_author", "a1_author", "a2_author"])]
return task_authors_df
def instance_to_df(instance, predicted_author=None, ground_truth_author=None):
#create a dataframe of the task authors
task_authos_df = pd.DataFrame([
{'authorID': 'Mystery author', 'fullText': instance['Q_fullText'], 'predicted': None, 'ground_truth': None},
{'authorID': 'Candidate Author 1', 'fullText': instance['a0_fullText'], 'predicted': int(predicted_author) == 0, 'ground_truth': int(ground_truth_author) == 0},
{'authorID': 'Candidate Author 2', 'fullText': instance['a1_fullText'], 'predicted': int(predicted_author) == 1, 'ground_truth': int(ground_truth_author) == 1},
{'authorID': 'Candidate Author 3', 'fullText': instance['a2_fullText'], 'predicted': int(predicted_author) == 2, 'ground_truth': int(ground_truth_author) == 2}
])
if type(instance['Q_fullText']) == list:
task_authos_df = task_authos_df.groupby('authorID').agg({'fullText': lambda x: list(x)}).reset_index()
return task_authos_df
def generate_style_embedding(background_corpus_df: pd.DataFrame, text_clm: str, model_name: str) -> pd.DataFrame:
"""
Generates style embeddings for documents in a background corpus using a specified model.
If a row in `text_clm` contains a list of strings, the final embedding for that row
is the average of the embeddings of all strings in the list.
Args:
background_corpus_df (pd.DataFrame): DataFrame containing the corpus.
text_clm (str): Name of the column containing the text data (either string or list of strings).
model_name (str): Name of the model to use for generating embeddings.
Returns:
pd.DataFrame: The input DataFrame with a new column for style embeddings.
"""
from sentence_transformers import SentenceTransformer
import torch
if model_name not in [
'gabrielloiseau/LUAR-MUD-sentence-transformers',
'gabrielloiseau/LUAR-CRUD-sentence-transformers',
'miladalsh/light-luar',
'AnnaWegmann/Style-Embedding',
]:
print('Model is not supported')
return background_corpus_df
print(f"Generating style embeddings using {model_name} on column '{text_clm}'...")
model = SentenceTransformer(model_name)
embedding_dim = model.get_sentence_embedding_dimension()
# Heuristic to check if the column contains lists of strings by checking the first valid item.
# This assumes the column is homogenous.
is_list_column = False
if not background_corpus_df.empty:
# Get the first non-NaN value to inspect its type
series_no_na = background_corpus_df[text_clm].dropna()
if not series_no_na.empty:
first_valid_item = series_no_na.iloc[0]
if isinstance(first_valid_item, list):
is_list_column = True
if is_list_column:
# Flatten all texts into a single list for batch processing
texts_to_encode = []
row_lengths = []
for text_list in background_corpus_df[text_clm]:
# Ensure we handle None, empty lists, or other non-list types gracefully
if isinstance(text_list, list) and text_list:
texts_to_encode.extend(text_list)
row_lengths.append(len(text_list))
else:
row_lengths.append(0)
if texts_to_encode:
all_embeddings = model.encode(texts_to_encode, convert_to_tensor=True, show_progress_bar=True)
else:
all_embeddings = torch.empty((0, embedding_dim), device=model.device)
# Reconstruct and average embeddings for each row
final_embeddings = []
current_pos = 0
for length in row_lengths:
if length > 0:
row_embeddings = all_embeddings[current_pos:current_pos + length]
avg_embedding = torch.mean(row_embeddings, dim=0)
final_embeddings.append(avg_embedding.cpu().numpy())
current_pos += length
else:
final_embeddings.append(np.zeros(embedding_dim))
else:
# Column contains single strings
texts = background_corpus_df[text_clm].fillna("").tolist()
# convert_to_tensor=False is faster if we just need numpy arrays
embeddings = model.encode(texts, show_progress_bar=True)
final_embeddings = list(embeddings)
# Create a clean column name from the model name
col_name = f'{model_name.split("/")[-1]}_style_embedding'
background_corpus_df[col_name] = final_embeddings
return background_corpus_df
# ── wrapper with caching ───────────────────────────────────────
def cached_generate_style_embedding(background_corpus_df: pd.DataFrame,
text_clm: str,
model_name: str) -> pd.DataFrame:
"""
Wraps `generate_style_embedding`, caching its output in pickle files
keyed by an MD5 of (model_name + text list). If the cache exists,
loads and returns it instead of recomputing.
"""
# Gather the input texts (preserves list-of-strings if any)
texts = background_corpus_df[text_clm].fillna("").tolist()
# Create a reproducible JSON serialization of the texts
serialized = json.dumps({
"model": model_name,
"col": text_clm,
"texts": texts
}, sort_keys=True, ensure_ascii=False)
# Compute MD5 hash
digest = hashlib.md5(serialized.encode("utf-8")).hexdigest()
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl")
# If cache hit, load and return
if os.path.exists(cache_path):
print(f"Cache hit for {model_name} on column '{text_clm}'")
print(cache_path)
with open(cache_path, "rb") as f:
return pickle.load(f)
# Otherwise, compute, cache, and return
df_with_emb = generate_style_embedding(background_corpus_df, text_clm, model_name)
print(f"Computing embeddings for {model_name} on column '{text_clm}', saving to {cache_path}")
with open(cache_path, "wb") as f:
pickle.dump(df_with_emb, f)
return df_with_emb
def get_style_feats_distribution(documentIDs, style_feats_dict):
style_feats = []
for documentId in documentIDs:
if documentId not in document_to_style_feats:
#print(documentId)
continue
style_feats+= document_to_style_feats[documentId]
tfidf = [style_feats.count(key) * val for key, val in style_feats_dict.items()]
return tfidf
def get_cluster_top_feats(style_feats_distribution, style_feats_list, top_k=5):
sorted_feats = np.argsort(style_feats_distribution)[::-1]
top_feats = [style_feats_list[x] for x in sorted_feats[:top_k] if style_feats_distribution[x] > 0]
return top_feats
def compute_clusters_style_representation(
background_corpus_df: pd.DataFrame,
cluster_ids: List[Any],
other_cluster_ids: List[Any],
features_clm_name: str,
cluster_label_clm_name: str = 'cluster_label',
top_n: int = 10
) -> List[str]:
"""
Given a DataFrame with document IDs, cluster IDs, and feature lists,
return the top N features that are most important in the specified `cluster_ids`
while having low importance in `other_cluster_ids`.
Importance is determined by TF-IDF scores. The final score for a feature is
(summed TF-IDF in `cluster_ids`) - (summed TF-IDF in `other_cluster_ids`).
Parameters:
- background_corpus_df: pd.DataFrame. Must contain the columns specified by
`cluster_label_clm_name` and `features_clm_name`.
The column `features_clm_name` should contain lists of strings (features).
- cluster_ids: List of cluster IDs for which to find representative features (target clusters).
- other_cluster_ids: List of cluster IDs whose features should be down-weighted.
Features prominent in these clusters will have their scores reduced.
Pass an empty list or None if no contrastive clusters are needed.
- features_clm_name: The name of the column in `background_corpus_df` that
contains the list of features for each document.
- cluster_label_clm_name: The name of the column in `background_corpus_df`
that contains the cluster labels. Defaults to 'cluster_label'.
- top_n: Number of top features to return.
Returns:
- List[str]: A list of feature names. These are up to `top_n` features
ranked by their adjusted TF-IDF scores (score in `cluster_ids`
minus score in `other_cluster_ids`). Only features with a final
adjusted score > 0 are included.
"""
assert background_corpus_df[features_clm_name].apply(
lambda x: isinstance(x, list) and all(isinstance(feat, str) for feat in x)
).all(), f"Column '{features_clm_name}' must contain lists of strings."
# Compute TF-IDF on the entire corpus
vectorizer = TfidfVectorizer(
tokenizer=lambda x: x,
preprocessor=lambda x: x,
token_pattern=None # Disable default token pattern, treat items in list as tokens
)
tfidf_matrix = vectorizer.fit_transform(background_corpus_df[features_clm_name])
feature_names = vectorizer.get_feature_names_out()
# Get boolean mask for documents in selected clusters
selected_mask = background_corpus_df[cluster_label_clm_name].isin(cluster_ids).to_numpy()
if not selected_mask.any():
return [] # No documents found for the given cluster_ids
# Subset the TF-IDF matrix using the boolean mask
selected_tfidf = tfidf_matrix[selected_mask]
# Sum TF-IDF scores across documents for each feature in the target clusters
target_feature_scores_sum = selected_tfidf.sum(axis=0).A1 # Convert to 1D array
# Initialize adjusted scores with target scores
adjusted_feature_scores = target_feature_scores_sum.copy()
# If other_cluster_ids are provided and not empty, subtract their TF-IDF sums
if other_cluster_ids: # Checks if the list is not None and not empty
other_selected_mask = background_corpus_df[cluster_label_clm_name].isin(other_cluster_ids).to_numpy()
if other_selected_mask.any():
other_selected_tfidf = tfidf_matrix[other_selected_mask]
contrast_feature_scores_sum = other_selected_tfidf.sum(axis=0).A1
# Element-wise subtraction; assumes feature_names aligns for both sums
adjusted_feature_scores -= contrast_feature_scores_sum
# Map scores to feature names
feature_score_dict = dict(zip(feature_names, adjusted_feature_scores))
# Sort features by score
sorted_features = sorted(feature_score_dict.items(), key=lambda item: item[1], reverse=True)
# Return the names of the top_n features that have a score > 0
top_features = [feature for feature, score in sorted_features if score > 0][:top_n]
return top_features
def compute_clusters_style_representation_2(
background_corpus_df: pd.DataFrame,
cluster_ids: List[Any],
cluster_label_clm_name: str = 'cluster_label',
max_num_feats: int = 5,
max_num_documents_per_author=3,
max_num_authors=5):
"""
Call openAI to analyze the common writing style features of the given list of texts
"""
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x)
background_corpus_df = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)]
author_texts = background_corpus_df['fullText'].tolist()[:max_num_authors]
author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)])
author_names = background_corpus_df[cluster_label_clm_name].tolist()[:max_num_authors]
print(f"Number of authors: {len(background_corpus_df)}")
print(author_names)
print(author_texts)
print(f"Number of authors: {len(author_names)}")
print(f"Number of authors: {len(author_texts)}")
prompt = f"""First identify a list of {max_num_feats} writing style features that are common between the given texts. Second for every author text and style feature, extract all spans that represent the feature. Output for every author all style features with their spans.
Author Texts:
\"\"\"{author_texts}\"\"\"
"""
# Compute MD5 hash
digest = hashlib.md5(prompt.encode("utf-8")).hexdigest()
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl")
# If cache hit, load and return
if os.path.exists(cache_path):
print(f"Loading authors writing style from cache ...")
with open(cache_path, "rb") as f:
parsed_response = pickle.load(f)
else: # Else compute and cache
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role":"assistant","content":"You are a forensic linguistic who knows how to analyze similarites in writing styles."},
{"role":"user","content":prompt}],
response_format={"type": "json_schema", "json_schema": {"name": "style_analysis_schema", "schema": to_strict_json_schema(style_analysis_schema)}}
)
parsed_response = json.loads(response.choices[0].message.content)
with open(cache_path, "wb") as f:
pickle.dump(parsed_response, f)
return parsed_response
def identify_style_features(author_texts: list[str], max_num_feats: int = 5) -> list[str]:
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
prompt = f"""Identify {max_num_feats} writing style features that are commonly found across the following texts. Do not extract spans. Just return the feature names as a list.
Author Texts:
\"\"\"{chr(10).join(author_texts)}\"\"\"
"""
def _make_call():
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "assistant", "content": "You are a forensic linguist specializing in writing styles."},
{"role": "user", "content": prompt}
],
response_format={
"type": "json_schema",
"json_schema": {
"name": "FeatureIdentificationSchema",
"schema": to_strict_json_schema(FeatureIdentificationSchema)
}
}
)
return json.loads(response.choices[0].message.content)
return retry_call(_make_call, FeatureIdentificationSchema).features
def retry_call(call_fn, schema_class, max_attempts=3, wait_sec=2):
for attempt in range(max_attempts):
try:
result = call_fn()
# Validate against schema
validated = schema_class(**result)
return validated
except (ValidationError, KeyError, json.JSONDecodeError) as e:
print(f"Attempt {attempt + 1} failed with error: {e}")
time.sleep(wait_sec)
raise RuntimeError("All retry attempts failed for OpenAI call.")
def extract_all_spans(authors_df: pd.DataFrame, features: list[str], cluster_label_clm_name: str = 'authorID') -> dict[str, dict[str, list[str]]]:
"""
For each author, use `generate_feature_spans_cached` to get feature->span mappings.
Returns a dict: {author_name: {feature: [spans]}}
"""
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
spans_by_author = {}
for _, row in authors_df.iterrows():
author_name = str(row[cluster_label_clm_name])
print(author_name)
role = f"{author_name}"
full_text = row['fullText']
spans = generate_feature_spans_cached(client, full_text, features, role)
spans_by_author[author_name] = spans
return spans_by_author
def compute_clusters_style_representation_3(
background_corpus_df: pd.DataFrame,
cluster_ids: List[Any],
cluster_label_clm_name: str = 'authorID',
max_num_feats: int = 10,
max_num_documents_per_author=3,
max_num_authors=5
):
print(f"Computing style representation for visible clusters: {len(cluster_ids)}")
# STEP 1: Identify features on 5 visible authors
background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x)
background_corpus_df_feat_id = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)]
author_texts = background_corpus_df_feat_id['fullText'].tolist()[:max_num_authors]
author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)])
author_names = background_corpus_df_feat_id[cluster_label_clm_name].tolist()[:max_num_authors]
print(f"Number of authors: {len(background_corpus_df_feat_id)}")
print(author_names)
features = identify_style_features(author_texts, max_num_feats=max_num_feats)
# STEP 2: Prepare author pool for span extraction
span_df = background_corpus_df.iloc[:4]
author_names = span_df[cluster_label_clm_name].tolist()[:4]
print(f"Number of authors for span detection : {len(span_df)}")
print(author_names)
spans_by_author = extract_all_spans(span_df, features, cluster_label_clm_name)
# Filter out features that are not present in any of the authors
filtered_spans_by_author = {x[0] : x[1] for x in spans_by_author.items() if x[0] in {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(cluster_ids))}
print('Filtering in features for only the following authors: ', filtered_spans_by_author.keys())
filtered_features = []
for feature in features:
found_in_any_author = False
for author_name, author_spans in filtered_spans_by_author.items():
if feature in author_spans:
found_in_any_author = True
break
if found_in_any_author:
filtered_features.append(feature)
features = filtered_features
return {
"features": features,
"spans": spans_by_author
}
def compute_clusters_g2v_representation(
background_corpus_df: pd.DataFrame,
author_ids: List[Any],
other_author_ids: List[Any],
features_clm_name: str,
top_n: int = 10,
mode: str = "sharedness",
sharedness_method: str = "mean_minus_alpha_std",
alpha: float = 0.5
) -> List[str]:
selected_mask = background_corpus_df['authorID'].isin(author_ids).to_numpy()
if not selected_mask.any():
return [] # No documents found for the given cluster_ids
selected_feats = background_corpus_df[selected_mask][features_clm_name].tolist()
all_g2v_feats = list(selected_feats[0].keys())
# If the user requested a sharedness-based score, compute it and return top-N.
if mode == "sharedness":
selected_matrix = np.array([list(x.values()) for x in selected_feats], dtype=float)
if sharedness_method == "mean":
scores = selected_matrix.mean(axis=0)
elif sharedness_method in ("mean_minus_alpha_std", "mean-std", "mean_minus_std"):
means = selected_matrix.mean(axis=0)
stds = selected_matrix.std(axis=0)
scores = means - float(alpha) * stds
elif sharedness_method == "min":
scores = selected_matrix.min(axis=0)
else:
# Default fallback to mean-minus-alpha*std if unknown method
means = selected_matrix.mean(axis=0)
stds = selected_matrix.std(axis=0)
scores = means - float(alpha) * stds
# Rank and return
feature_scores = [(feat, score) for feat, score in zip(all_g2v_feats, scores) if score > 0]
feature_scores.sort(key=lambda x: x[1], reverse=True)
return [feat for feat, _ in feature_scores[:top_n]]
# Contrastive mode (default): compute target mean and subtract contrast mean
all_g2v_values = np.array([list(x.values()) for x in selected_feats]).mean(axis=0)
other_selected_feats = background_corpus_df[~selected_mask][features_clm_name].tolist()
all_g2v_other_feats = list(other_selected_feats[0].keys())
all_g2v_other_values = np.array([list(x.values()) for x in other_selected_feats]).mean(axis=0)
final_g2v_feats_values = all_g2v_values - all_g2v_other_values
top_g2v_feats = sorted(list(zip(all_g2v_feats, final_g2v_feats_values)), key=lambda x: -x[1])
# Filter out features that are not present in any of the authors
selected_authors = {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(author_ids))
print('Filtering in g2v features for only the following authors: ', selected_authors)
authors_g2v_feats = background_corpus_df[background_corpus_df['authorID'].isin(selected_authors)][features_clm_name].tolist()
filtered_features = []
for feature, score in top_g2v_feats:
found_in_any_author = False
for author_g2v_feats in authors_g2v_feats:
if author_g2v_feats[feature] > 0:
found_in_any_author = True
break
if found_in_any_author:
filtered_features.append(feature)
print('Filtered G2V features: ', filtered_features)
return filtered_features[:top_n]
def generate_interpretable_space_representation(interp_space_path, styles_df_path, feat_clm, output_clm, num_feats=5):
styles_df = pd.read_csv(styles_df_path)[[feat_clm, "documentID"]]
# A dictionary of style features and their IDF
style_feats_agg_df = styles_df.groupby(feat_clm).agg({'documentID': lambda x : len(list(x))}).reset_index()
style_feats_agg_df['document_freq'] = style_feats_agg_df.documentID
style_to_feats_dfreq = {x[0]: math.log(styles_df.documentID.nunique()/x[1]) for x in zip(style_feats_agg_df[feat_clm].tolist(), style_feats_agg_df.document_freq.tolist())}
# A list of style features we work with
style_feats_list = style_feats_agg_df[feat_clm].tolist()
print('Number of style feats ', len(style_feats_list))
# A list of documents and what list of style features each has
doc_style_agg_df = styles_df.groupby('documentID').agg({feat_clm: lambda x : list(x)}).reset_index()
document_to_feats_dict = {x[0]: x[1] for x in zip(doc_style_agg_df.documentID.tolist(), doc_style_agg_df[feat_clm].tolist())}
# Load the clustering information
df = pd.read_pickle(interp_space_path)
df = df[df.cluster_label != -1]
# A cluster to list of documents
clusterd_df = df.groupby('cluster_label').agg({
'documentID': lambda x: [d_id for doc_ids in x for d_id in doc_ids]
}).reset_index()
# Filter-in only documents that has a style description
clusterd_df['documentID'] = clusterd_df.documentID.apply(lambda documentIDs: [documentID for documentID in documentIDs if documentID in document_to_feats_dict])
# Map from cluster label to list of features through the document information
clusterd_df[feat_clm] = clusterd_df.documentID.apply(lambda doc_ids: [f for d_id in doc_ids for f in document_to_feats_dict[d_id]])
def compute_tfidf(row):
style_counts = Counter(row[feat_clm])
total_num_styles = sum(style_counts.values())
#print(style_counts, total_num_styles)
style_distribution = {
style: math.log(1+count) * style_to_feats_dfreq[style] if style in style_to_feats_dfreq else 0 for style, count in style_counts.items()
} #TF-IDF
return style_distribution
def create_tfidf_rep(tfidf_dist, num_feats):
style_feats = sorted(tfidf_dist.items(), key=lambda x: -x[1])
top_k_feats = [x[0] for x in style_feats[:num_feats] if str(x[0]) != 'nan']
return top_k_feats
clusterd_df[output_clm +'_dist'] = clusterd_df.apply(lambda row: compute_tfidf(row), axis=1)
clusterd_df[output_clm] = clusterd_df[output_clm +'_dist'].apply(lambda dist: create_tfidf_rep(dist, num_feats))
return clusterd_df
def compute_predicted_author(task_authors_df: pd.DataFrame, col_name: str) -> int:
"""
Computes the predicted author based on the style features.
"""
print("Computing predicted author using LUAR-MUD-style embeddings...")
# Extract LUAR embeddings from task authors dataframe
mystery_embedding = np.array(task_authors_df.iloc[0][col_name]).reshape(1, -1)
candidate_embeddings = np.array([
task_authors_df.iloc[1][col_name],
task_authors_df.iloc[2][col_name],
task_authors_df.iloc[3][col_name]
])
# Compute cosine similarities
similarities = cosine_similarity(mystery_embedding, candidate_embeddings)[0]
predicted_author = int(np.argmax(similarities))
print(f"Predicted author is Candidate {predicted_author + 1}")
return predicted_author
if __name__ == "__main__":
background_corpus = pd.read_pickle('../datasets/luar_interp_space_cluster_19/train_authors.pkl')
print(background_corpus.columns)
print(background_corpus[['authorID', 'fullText', 'cluster_label']].head())
# # Example: Find features for clusters [2,3,4] that are NOT prominent in cluster [1]
# feats = compute_clusters_style_representation(
# background_corpus_df=background_corpus,
# cluster_ids=['00005a5c-5c06-3a36-37f9-53c6422a31d8',],
# other_cluster_ids=[], # Pass the contrastive cluster IDs here
# cluster_label_clm_name='authorID',
# features_clm_name='final_attribute_name'
# )
# print(feats)
generate_style_embedding(background_corpus, 'fullText', 'AnnaWegmann/Style-Embedding')
print(background_corpus.columns)