|
import sys |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import math |
|
from collections import Counter, defaultdict |
|
from typing import List, Any |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
import os |
|
import pickle |
|
import hashlib |
|
import json |
|
from gram2vec import vectorizer |
|
from openai import OpenAI |
|
from openai.lib._pydantic import to_strict_json_schema |
|
from pydantic import BaseModel |
|
from pydantic import ValidationError |
|
import time |
|
from utils.llm_feat_utils import generate_feature_spans_cached |
|
from collections import Counter |
|
import numpy as np |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
CACHE_DIR = "datasets/embeddings_cache" |
|
os.makedirs(CACHE_DIR, exist_ok=True) |
|
|
|
CACHE_VERSION = 1 |
|
|
|
class style_analysis_schema(BaseModel): |
|
features: list[str] |
|
spans: dict[str, dict[str, list[str]]] |
|
|
|
class FeatureIdentificationSchema(BaseModel): |
|
features: list[str] |
|
|
|
class SpanExtractionSchema(BaseModel): |
|
spans: dict[str, dict[str, list[str]]] |
|
|
|
|
|
|
|
def compute_g2v_features(clustered_authors_df: pd.DataFrame, task_authors_df: pd.DataFrame=None, text_clm='fullText') -> pd.DataFrame: |
|
""" |
|
Computes gram2vec feature vectors for each author and adds them to the DataFrame. |
|
This effectively creates a mapping from each author to their vector. |
|
""" |
|
if task_authors_df is not None: |
|
print (f"concatenating task authors and background corpus authors") |
|
print(f"Number of task authors: {len(task_authors_df)}") |
|
print(f"task authors author_ids: {task_authors_df.authorID.tolist()}") |
|
print(f"task authors -->") |
|
print(task_authors_df) |
|
print(f"Number of background corpus authors: {len(clustered_authors_df)}") |
|
clustered_authors_df = pd.concat([task_authors_df, clustered_authors_df]) |
|
print(f"Number of authors after concatenation: {len(clustered_authors_df)}") |
|
|
|
|
|
|
|
author_texts = ['\n\n'.join(x) for x in clustered_authors_df.fullText.tolist()] |
|
|
|
print(f"Number of author_texts: {len(author_texts)}") |
|
|
|
|
|
serialized = json.dumps({ |
|
"col": text_clm, |
|
"texts": author_texts |
|
}, sort_keys=True, ensure_ascii=False) |
|
|
|
|
|
digest = hashlib.md5(serialized.encode("utf-8")).hexdigest() |
|
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") |
|
|
|
|
|
if os.path.exists(cache_path): |
|
print(f"Cache hit...") |
|
with open(cache_path, "rb") as f: |
|
clustered_authors_df = pickle.load(f) |
|
|
|
else: |
|
g2v_feats_df = vectorizer.from_documents(author_texts, batch_size=16) |
|
|
|
print(f"Number of g2v features: {len(g2v_feats_df)}") |
|
print(f"Number of clustered_authors_df.authorID.tolist(): {len(clustered_authors_df.authorID.tolist())}") |
|
print(f"Number of g2v_feats_df.to_numpy().tolist(): {len(g2v_feats_df.to_numpy().tolist())}") |
|
|
|
ids = clustered_authors_df.authorID.tolist() |
|
counter = Counter(ids) |
|
duplicates = [k for k, v in counter.items() if v > 1] |
|
|
|
print(f"Duplicate authorIDs: {duplicates}") |
|
print(f"Number of duplicates: {len(ids) - len(set(ids))}") |
|
|
|
author_to_g2v_feats = {x[0]: x[1] for x in zip(clustered_authors_df.authorID.tolist(), g2v_feats_df.to_numpy().tolist())} |
|
|
|
print(f"Number of authors with g2v features: {len(author_to_g2v_feats)}") |
|
|
|
|
|
vector_std = np.std(list(author_to_g2v_feats.values()), axis=0) |
|
vector_mean = np.mean(list(author_to_g2v_feats.values()), axis=0) |
|
vector_std[vector_std == 0] = 1.0 |
|
author_to_g2v_feats_z_normalized = {x[0]: (x[1] - vector_mean) / vector_std for x in author_to_g2v_feats.items()} |
|
|
|
print(f"Number of authors with g2v features normalized: {len(author_to_g2v_feats_z_normalized)}") |
|
print(f" len of clustered authors df: {len(clustered_authors_df)}") |
|
|
|
|
|
|
|
clustered_authors_df['g2v_vector'] = [{x[1]: x[0] for x in zip(val, g2v_feats_df.columns.tolist())} |
|
for val in author_to_g2v_feats_z_normalized.values()] |
|
|
|
with open(cache_path, "wb") as f: |
|
pickle.dump(clustered_authors_df, f) |
|
|
|
if task_authors_df is not None: |
|
task_authors_df = clustered_authors_df[clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())] |
|
clustered_authors_df = clustered_authors_df[~clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())] |
|
|
|
|
|
return clustered_authors_df['g2v_vector'].tolist(), task_authors_df['g2v_vector'].tolist() |
|
|
|
|
|
def get_task_authors_from_background_df(background_df): |
|
task_authors_df = background_df[background_df.authorID.isin(["Q_author", "a0_author", "a1_author", "a2_author"])] |
|
return task_authors_df |
|
|
|
def instance_to_df(instance, predicted_author=None, ground_truth_author=None): |
|
|
|
task_authos_df = pd.DataFrame([ |
|
{'authorID': 'Mystery author', 'fullText': instance['Q_fullText'], 'predicted': None, 'ground_truth': None}, |
|
{'authorID': 'Candidate Author 1', 'fullText': instance['a0_fullText'], 'predicted': int(predicted_author) == 0, 'ground_truth': int(ground_truth_author) == 0}, |
|
{'authorID': 'Candidate Author 2', 'fullText': instance['a1_fullText'], 'predicted': int(predicted_author) == 1, 'ground_truth': int(ground_truth_author) == 1}, |
|
{'authorID': 'Candidate Author 3', 'fullText': instance['a2_fullText'], 'predicted': int(predicted_author) == 2, 'ground_truth': int(ground_truth_author) == 2} |
|
|
|
]) |
|
|
|
if type(instance['Q_fullText']) == list: |
|
task_authos_df = task_authos_df.groupby('authorID').agg({'fullText': lambda x: list(x)}).reset_index() |
|
|
|
return task_authos_df |
|
|
|
|
|
def generate_style_embedding(background_corpus_df: pd.DataFrame, text_clm: str, model_name: str) -> pd.DataFrame: |
|
""" |
|
Generates style embeddings for documents in a background corpus using a specified model. |
|
If a row in `text_clm` contains a list of strings, the final embedding for that row |
|
is the average of the embeddings of all strings in the list. |
|
|
|
Args: |
|
background_corpus_df (pd.DataFrame): DataFrame containing the corpus. |
|
text_clm (str): Name of the column containing the text data (either string or list of strings). |
|
model_name (str): Name of the model to use for generating embeddings. |
|
|
|
Returns: |
|
pd.DataFrame: The input DataFrame with a new column for style embeddings. |
|
""" |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
|
|
if model_name not in [ |
|
'gabrielloiseau/LUAR-MUD-sentence-transformers', |
|
'gabrielloiseau/LUAR-CRUD-sentence-transformers', |
|
'miladalsh/light-luar', |
|
'AnnaWegmann/Style-Embedding', |
|
|
|
]: |
|
print('Model is not supported') |
|
return background_corpus_df |
|
|
|
print(f"Generating style embeddings using {model_name} on column '{text_clm}'...") |
|
|
|
model = SentenceTransformer(model_name) |
|
embedding_dim = model.get_sentence_embedding_dimension() |
|
|
|
|
|
|
|
is_list_column = False |
|
if not background_corpus_df.empty: |
|
|
|
series_no_na = background_corpus_df[text_clm].dropna() |
|
if not series_no_na.empty: |
|
first_valid_item = series_no_na.iloc[0] |
|
if isinstance(first_valid_item, list): |
|
is_list_column = True |
|
|
|
if is_list_column: |
|
|
|
texts_to_encode = [] |
|
row_lengths = [] |
|
for text_list in background_corpus_df[text_clm]: |
|
|
|
if isinstance(text_list, list) and text_list: |
|
texts_to_encode.extend(text_list) |
|
row_lengths.append(len(text_list)) |
|
else: |
|
row_lengths.append(0) |
|
|
|
if texts_to_encode: |
|
all_embeddings = model.encode(texts_to_encode, convert_to_tensor=True, show_progress_bar=True) |
|
else: |
|
all_embeddings = torch.empty((0, embedding_dim), device=model.device) |
|
|
|
|
|
final_embeddings = [] |
|
current_pos = 0 |
|
for length in row_lengths: |
|
if length > 0: |
|
row_embeddings = all_embeddings[current_pos:current_pos + length] |
|
avg_embedding = torch.mean(row_embeddings, dim=0) |
|
final_embeddings.append(avg_embedding.cpu().numpy()) |
|
current_pos += length |
|
else: |
|
final_embeddings.append(np.zeros(embedding_dim)) |
|
else: |
|
|
|
texts = background_corpus_df[text_clm].fillna("").tolist() |
|
|
|
embeddings = model.encode(texts, show_progress_bar=True) |
|
final_embeddings = list(embeddings) |
|
|
|
|
|
col_name = f'{model_name.split("/")[-1]}_style_embedding' |
|
background_corpus_df[col_name] = final_embeddings |
|
|
|
return background_corpus_df |
|
|
|
|
|
def cached_generate_style_embedding(background_corpus_df: pd.DataFrame, |
|
text_clm: str, |
|
model_name: str) -> pd.DataFrame: |
|
""" |
|
Wraps `generate_style_embedding`, caching its output in pickle files |
|
keyed by an MD5 of (model_name + text list). If the cache exists, |
|
loads and returns it instead of recomputing. |
|
""" |
|
|
|
|
|
texts = background_corpus_df[text_clm].fillna("").tolist() |
|
|
|
|
|
serialized = json.dumps({ |
|
"model": model_name, |
|
"col": text_clm, |
|
"texts": texts |
|
}, sort_keys=True, ensure_ascii=False) |
|
|
|
|
|
digest = hashlib.md5(serialized.encode("utf-8")).hexdigest() |
|
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") |
|
|
|
|
|
if os.path.exists(cache_path): |
|
print(f"Cache hit for {model_name} on column '{text_clm}'") |
|
print(cache_path) |
|
with open(cache_path, "rb") as f: |
|
return pickle.load(f) |
|
|
|
|
|
df_with_emb = generate_style_embedding(background_corpus_df, text_clm, model_name) |
|
print(f"Computing embeddings for {model_name} on column '{text_clm}', saving to {cache_path}") |
|
with open(cache_path, "wb") as f: |
|
pickle.dump(df_with_emb, f) |
|
return df_with_emb |
|
|
|
def get_style_feats_distribution(documentIDs, style_feats_dict): |
|
style_feats = [] |
|
for documentId in documentIDs: |
|
if documentId not in document_to_style_feats: |
|
|
|
continue |
|
|
|
style_feats+= document_to_style_feats[documentId] |
|
|
|
tfidf = [style_feats.count(key) * val for key, val in style_feats_dict.items()] |
|
|
|
return tfidf |
|
|
|
def get_cluster_top_feats(style_feats_distribution, style_feats_list, top_k=5): |
|
sorted_feats = np.argsort(style_feats_distribution)[::-1] |
|
top_feats = [style_feats_list[x] for x in sorted_feats[:top_k] if style_feats_distribution[x] > 0] |
|
return top_feats |
|
|
|
def compute_clusters_style_representation( |
|
background_corpus_df: pd.DataFrame, |
|
cluster_ids: List[Any], |
|
other_cluster_ids: List[Any], |
|
features_clm_name: str, |
|
cluster_label_clm_name: str = 'cluster_label', |
|
top_n: int = 10 |
|
) -> List[str]: |
|
""" |
|
Given a DataFrame with document IDs, cluster IDs, and feature lists, |
|
return the top N features that are most important in the specified `cluster_ids` |
|
while having low importance in `other_cluster_ids`. |
|
Importance is determined by TF-IDF scores. The final score for a feature is |
|
(summed TF-IDF in `cluster_ids`) - (summed TF-IDF in `other_cluster_ids`). |
|
|
|
Parameters: |
|
- background_corpus_df: pd.DataFrame. Must contain the columns specified by |
|
`cluster_label_clm_name` and `features_clm_name`. |
|
The column `features_clm_name` should contain lists of strings (features). |
|
- cluster_ids: List of cluster IDs for which to find representative features (target clusters). |
|
- other_cluster_ids: List of cluster IDs whose features should be down-weighted. |
|
Features prominent in these clusters will have their scores reduced. |
|
Pass an empty list or None if no contrastive clusters are needed. |
|
- features_clm_name: The name of the column in `background_corpus_df` that |
|
contains the list of features for each document. |
|
- cluster_label_clm_name: The name of the column in `background_corpus_df` |
|
that contains the cluster labels. Defaults to 'cluster_label'. |
|
- top_n: Number of top features to return. |
|
Returns: |
|
- List[str]: A list of feature names. These are up to `top_n` features |
|
ranked by their adjusted TF-IDF scores (score in `cluster_ids` |
|
minus score in `other_cluster_ids`). Only features with a final |
|
adjusted score > 0 are included. |
|
""" |
|
|
|
assert background_corpus_df[features_clm_name].apply( |
|
lambda x: isinstance(x, list) and all(isinstance(feat, str) for feat in x) |
|
).all(), f"Column '{features_clm_name}' must contain lists of strings." |
|
|
|
|
|
vectorizer = TfidfVectorizer( |
|
tokenizer=lambda x: x, |
|
preprocessor=lambda x: x, |
|
token_pattern=None |
|
) |
|
tfidf_matrix = vectorizer.fit_transform(background_corpus_df[features_clm_name]) |
|
feature_names = vectorizer.get_feature_names_out() |
|
|
|
|
|
selected_mask = background_corpus_df[cluster_label_clm_name].isin(cluster_ids).to_numpy() |
|
|
|
if not selected_mask.any(): |
|
return [] |
|
|
|
|
|
selected_tfidf = tfidf_matrix[selected_mask] |
|
|
|
|
|
target_feature_scores_sum = selected_tfidf.sum(axis=0).A1 |
|
|
|
|
|
adjusted_feature_scores = target_feature_scores_sum.copy() |
|
|
|
|
|
if other_cluster_ids: |
|
other_selected_mask = background_corpus_df[cluster_label_clm_name].isin(other_cluster_ids).to_numpy() |
|
|
|
if other_selected_mask.any(): |
|
other_selected_tfidf = tfidf_matrix[other_selected_mask] |
|
contrast_feature_scores_sum = other_selected_tfidf.sum(axis=0).A1 |
|
|
|
|
|
adjusted_feature_scores -= contrast_feature_scores_sum |
|
|
|
|
|
feature_score_dict = dict(zip(feature_names, adjusted_feature_scores)) |
|
|
|
sorted_features = sorted(feature_score_dict.items(), key=lambda item: item[1], reverse=True) |
|
|
|
|
|
top_features = [feature for feature, score in sorted_features if score > 0][:top_n] |
|
|
|
return top_features |
|
|
|
def compute_clusters_style_representation_2( |
|
background_corpus_df: pd.DataFrame, |
|
cluster_ids: List[Any], |
|
cluster_label_clm_name: str = 'cluster_label', |
|
max_num_feats: int = 5, |
|
max_num_documents_per_author=3, |
|
max_num_authors=5): |
|
""" |
|
Call openAI to analyze the common writing style features of the given list of texts |
|
""" |
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
|
|
background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x) |
|
background_corpus_df = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)] |
|
|
|
author_texts = background_corpus_df['fullText'].tolist()[:max_num_authors] |
|
author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)]) |
|
author_names = background_corpus_df[cluster_label_clm_name].tolist()[:max_num_authors] |
|
print(f"Number of authors: {len(background_corpus_df)}") |
|
print(author_names) |
|
print(author_texts) |
|
print(f"Number of authors: {len(author_names)}") |
|
print(f"Number of authors: {len(author_texts)}") |
|
|
|
prompt = f"""First identify a list of {max_num_feats} writing style features that are common between the given texts. Second for every author text and style feature, extract all spans that represent the feature. Output for every author all style features with their spans. |
|
Author Texts: |
|
\"\"\"{author_texts}\"\"\" |
|
""" |
|
|
|
|
|
digest = hashlib.md5(prompt.encode("utf-8")).hexdigest() |
|
cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") |
|
|
|
|
|
if os.path.exists(cache_path): |
|
print(f"Loading authors writing style from cache ...") |
|
with open(cache_path, "rb") as f: |
|
parsed_response = pickle.load(f) |
|
|
|
else: |
|
|
|
response = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[ |
|
{"role":"assistant","content":"You are a forensic linguistic who knows how to analyze similarites in writing styles."}, |
|
{"role":"user","content":prompt}], |
|
response_format={"type": "json_schema", "json_schema": {"name": "style_analysis_schema", "schema": to_strict_json_schema(style_analysis_schema)}} |
|
) |
|
|
|
parsed_response = json.loads(response.choices[0].message.content) |
|
|
|
with open(cache_path, "wb") as f: |
|
pickle.dump(parsed_response, f) |
|
|
|
return parsed_response |
|
|
|
def identify_style_features(author_texts: list[str], max_num_feats: int = 5) -> list[str]: |
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
prompt = f"""Identify {max_num_feats} writing style features that are commonly found across the following texts. Do not extract spans. Just return the feature names as a list. |
|
Author Texts: |
|
\"\"\"{chr(10).join(author_texts)}\"\"\" |
|
""" |
|
|
|
def _make_call(): |
|
response = client.chat.completions.create( |
|
model="gpt-4o-mini", |
|
messages=[ |
|
{"role": "assistant", "content": "You are a forensic linguist specializing in writing styles."}, |
|
{"role": "user", "content": prompt} |
|
], |
|
response_format={ |
|
"type": "json_schema", |
|
"json_schema": { |
|
"name": "FeatureIdentificationSchema", |
|
"schema": to_strict_json_schema(FeatureIdentificationSchema) |
|
} |
|
} |
|
) |
|
return json.loads(response.choices[0].message.content) |
|
|
|
return retry_call(_make_call, FeatureIdentificationSchema).features |
|
|
|
def retry_call(call_fn, schema_class, max_attempts=3, wait_sec=2): |
|
for attempt in range(max_attempts): |
|
try: |
|
result = call_fn() |
|
|
|
validated = schema_class(**result) |
|
return validated |
|
except (ValidationError, KeyError, json.JSONDecodeError) as e: |
|
print(f"Attempt {attempt + 1} failed with error: {e}") |
|
time.sleep(wait_sec) |
|
raise RuntimeError("All retry attempts failed for OpenAI call.") |
|
|
|
def extract_all_spans(authors_df: pd.DataFrame, features: list[str], cluster_label_clm_name: str = 'authorID') -> dict[str, dict[str, list[str]]]: |
|
""" |
|
For each author, use `generate_feature_spans_cached` to get feature->span mappings. |
|
Returns a dict: {author_name: {feature: [spans]}} |
|
""" |
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
|
|
spans_by_author = {} |
|
|
|
for _, row in authors_df.iterrows(): |
|
author_name = str(row[cluster_label_clm_name]) |
|
print(author_name) |
|
role = f"{author_name}" |
|
full_text = row['fullText'] |
|
spans = generate_feature_spans_cached(client, full_text, features, role) |
|
spans_by_author[author_name] = spans |
|
|
|
return spans_by_author |
|
|
|
def compute_clusters_style_representation_3( |
|
background_corpus_df: pd.DataFrame, |
|
cluster_ids: List[Any], |
|
cluster_label_clm_name: str = 'authorID', |
|
max_num_feats: int = 10, |
|
max_num_documents_per_author=3, |
|
max_num_authors=5 |
|
): |
|
|
|
print(f"Computing style representation for visible clusters: {len(cluster_ids)}") |
|
|
|
background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x) |
|
background_corpus_df_feat_id = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)] |
|
|
|
author_texts = background_corpus_df_feat_id['fullText'].tolist()[:max_num_authors] |
|
author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)]) |
|
author_names = background_corpus_df_feat_id[cluster_label_clm_name].tolist()[:max_num_authors] |
|
print(f"Number of authors: {len(background_corpus_df_feat_id)}") |
|
print(author_names) |
|
features = identify_style_features(author_texts, max_num_feats=max_num_feats) |
|
|
|
|
|
span_df = background_corpus_df.iloc[:4] |
|
author_names = span_df[cluster_label_clm_name].tolist()[:4] |
|
print(f"Number of authors for span detection : {len(span_df)}") |
|
print(author_names) |
|
spans_by_author = extract_all_spans(span_df, features, cluster_label_clm_name) |
|
|
|
|
|
filtered_spans_by_author = {x[0] : x[1] for x in spans_by_author.items() if x[0] in {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(cluster_ids))} |
|
print('Filtering in features for only the following authors: ', filtered_spans_by_author.keys()) |
|
filtered_features = [] |
|
for feature in features: |
|
found_in_any_author = False |
|
for author_name, author_spans in filtered_spans_by_author.items(): |
|
if feature in author_spans: |
|
found_in_any_author = True |
|
break |
|
if found_in_any_author: |
|
filtered_features.append(feature) |
|
features = filtered_features |
|
|
|
return { |
|
"features": features, |
|
"spans": spans_by_author |
|
} |
|
|
|
def compute_clusters_g2v_representation( |
|
background_corpus_df: pd.DataFrame, |
|
author_ids: List[Any], |
|
other_author_ids: List[Any], |
|
features_clm_name: str, |
|
top_n: int = 10, |
|
mode: str = "sharedness", |
|
sharedness_method: str = "mean_minus_alpha_std", |
|
alpha: float = 0.5 |
|
) -> List[str]: |
|
|
|
|
|
selected_mask = background_corpus_df['authorID'].isin(author_ids).to_numpy() |
|
|
|
if not selected_mask.any(): |
|
return [] |
|
|
|
selected_feats = background_corpus_df[selected_mask][features_clm_name].tolist() |
|
all_g2v_feats = list(selected_feats[0].keys()) |
|
|
|
|
|
if mode == "sharedness": |
|
selected_matrix = np.array([list(x.values()) for x in selected_feats], dtype=float) |
|
|
|
if sharedness_method == "mean": |
|
scores = selected_matrix.mean(axis=0) |
|
elif sharedness_method in ("mean_minus_alpha_std", "mean-std", "mean_minus_std"): |
|
means = selected_matrix.mean(axis=0) |
|
stds = selected_matrix.std(axis=0) |
|
scores = means - float(alpha) * stds |
|
elif sharedness_method == "min": |
|
scores = selected_matrix.min(axis=0) |
|
else: |
|
|
|
means = selected_matrix.mean(axis=0) |
|
stds = selected_matrix.std(axis=0) |
|
scores = means - float(alpha) * stds |
|
|
|
|
|
feature_scores = [(feat, score) for feat, score in zip(all_g2v_feats, scores) if score > 0] |
|
feature_scores.sort(key=lambda x: x[1], reverse=True) |
|
return [feat for feat, _ in feature_scores[:top_n]] |
|
|
|
|
|
|
|
all_g2v_values = np.array([list(x.values()) for x in selected_feats]).mean(axis=0) |
|
|
|
other_selected_feats = background_corpus_df[~selected_mask][features_clm_name].tolist() |
|
all_g2v_other_feats = list(other_selected_feats[0].keys()) |
|
all_g2v_other_values = np.array([list(x.values()) for x in other_selected_feats]).mean(axis=0) |
|
|
|
final_g2v_feats_values = all_g2v_values - all_g2v_other_values |
|
|
|
|
|
top_g2v_feats = sorted(list(zip(all_g2v_feats, final_g2v_feats_values)), key=lambda x: -x[1]) |
|
|
|
|
|
selected_authors = {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(author_ids)) |
|
print('Filtering in g2v features for only the following authors: ', selected_authors) |
|
authors_g2v_feats = background_corpus_df[background_corpus_df['authorID'].isin(selected_authors)][features_clm_name].tolist() |
|
filtered_features = [] |
|
for feature, score in top_g2v_feats: |
|
found_in_any_author = False |
|
for author_g2v_feats in authors_g2v_feats: |
|
if author_g2v_feats[feature] > 0: |
|
found_in_any_author = True |
|
break |
|
if found_in_any_author: |
|
filtered_features.append(feature) |
|
|
|
print('Filtered G2V features: ', filtered_features) |
|
|
|
return filtered_features[:top_n] |
|
|
|
def generate_interpretable_space_representation(interp_space_path, styles_df_path, feat_clm, output_clm, num_feats=5): |
|
|
|
styles_df = pd.read_csv(styles_df_path)[[feat_clm, "documentID"]] |
|
|
|
|
|
style_feats_agg_df = styles_df.groupby(feat_clm).agg({'documentID': lambda x : len(list(x))}).reset_index() |
|
style_feats_agg_df['document_freq'] = style_feats_agg_df.documentID |
|
style_to_feats_dfreq = {x[0]: math.log(styles_df.documentID.nunique()/x[1]) for x in zip(style_feats_agg_df[feat_clm].tolist(), style_feats_agg_df.document_freq.tolist())} |
|
|
|
|
|
style_feats_list = style_feats_agg_df[feat_clm].tolist() |
|
print('Number of style feats ', len(style_feats_list)) |
|
|
|
|
|
doc_style_agg_df = styles_df.groupby('documentID').agg({feat_clm: lambda x : list(x)}).reset_index() |
|
document_to_feats_dict = {x[0]: x[1] for x in zip(doc_style_agg_df.documentID.tolist(), doc_style_agg_df[feat_clm].tolist())} |
|
|
|
|
|
|
|
|
|
df = pd.read_pickle(interp_space_path) |
|
df = df[df.cluster_label != -1] |
|
|
|
clusterd_df = df.groupby('cluster_label').agg({ |
|
'documentID': lambda x: [d_id for doc_ids in x for d_id in doc_ids] |
|
}).reset_index() |
|
|
|
|
|
clusterd_df['documentID'] = clusterd_df.documentID.apply(lambda documentIDs: [documentID for documentID in documentIDs if documentID in document_to_feats_dict]) |
|
|
|
clusterd_df[feat_clm] = clusterd_df.documentID.apply(lambda doc_ids: [f for d_id in doc_ids for f in document_to_feats_dict[d_id]]) |
|
|
|
def compute_tfidf(row): |
|
style_counts = Counter(row[feat_clm]) |
|
total_num_styles = sum(style_counts.values()) |
|
|
|
style_distribution = { |
|
style: math.log(1+count) * style_to_feats_dfreq[style] if style in style_to_feats_dfreq else 0 for style, count in style_counts.items() |
|
} |
|
|
|
return style_distribution |
|
|
|
def create_tfidf_rep(tfidf_dist, num_feats): |
|
style_feats = sorted(tfidf_dist.items(), key=lambda x: -x[1]) |
|
top_k_feats = [x[0] for x in style_feats[:num_feats] if str(x[0]) != 'nan'] |
|
return top_k_feats |
|
|
|
clusterd_df[output_clm +'_dist'] = clusterd_df.apply(lambda row: compute_tfidf(row), axis=1) |
|
clusterd_df[output_clm] = clusterd_df[output_clm +'_dist'].apply(lambda dist: create_tfidf_rep(dist, num_feats)) |
|
|
|
|
|
return clusterd_df |
|
|
|
def compute_predicted_author(task_authors_df: pd.DataFrame, col_name: str) -> int: |
|
""" |
|
Computes the predicted author based on the style features. |
|
""" |
|
print("Computing predicted author using LUAR-MUD-style embeddings...") |
|
|
|
|
|
mystery_embedding = np.array(task_authors_df.iloc[0][col_name]).reshape(1, -1) |
|
candidate_embeddings = np.array([ |
|
task_authors_df.iloc[1][col_name], |
|
task_authors_df.iloc[2][col_name], |
|
task_authors_df.iloc[3][col_name] |
|
]) |
|
|
|
|
|
similarities = cosine_similarity(mystery_embedding, candidate_embeddings)[0] |
|
predicted_author = int(np.argmax(similarities)) |
|
print(f"Predicted author is Candidate {predicted_author + 1}") |
|
|
|
return predicted_author |
|
|
|
|
|
if __name__ == "__main__": |
|
background_corpus = pd.read_pickle('../datasets/luar_interp_space_cluster_19/train_authors.pkl') |
|
print(background_corpus.columns) |
|
print(background_corpus[['authorID', 'fullText', 'cluster_label']].head()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generate_style_embedding(background_corpus, 'fullText', 'AnnaWegmann/Style-Embedding') |
|
print(background_corpus.columns) |
|
|