import sys import pandas as pd import numpy as np import math from collections import Counter, defaultdict from typing import List, Any from sklearn.feature_extraction.text import TfidfVectorizer import os import pickle import hashlib import json from gram2vec import vectorizer from openai import OpenAI from openai.lib._pydantic import to_strict_json_schema from pydantic import BaseModel from pydantic import ValidationError import time from utils.llm_feat_utils import generate_feature_spans_cached from collections import Counter import numpy as np from sklearn.metrics.pairwise import cosine_similarity CACHE_DIR = "datasets/embeddings_cache" os.makedirs(CACHE_DIR, exist_ok=True) # Bump this whenever there is a change etc... CACHE_VERSION = 1 class style_analysis_schema(BaseModel): features: list[str] spans: dict[str, dict[str, list[str]]] class FeatureIdentificationSchema(BaseModel): features: list[str] class SpanExtractionSchema(BaseModel): spans: dict[str, dict[str, list[str]]] # {author_name: {feature: [spans]}} def compute_g2v_features(clustered_authors_df: pd.DataFrame, task_authors_df: pd.DataFrame=None, text_clm='fullText') -> pd.DataFrame: """ Computes gram2vec feature vectors for each author and adds them to the DataFrame. This effectively creates a mapping from each author to their vector. """ if task_authors_df is not None: print (f"concatenating task authors and background corpus authors") print(f"Number of task authors: {len(task_authors_df)}") print(f"task authors author_ids: {task_authors_df.authorID.tolist()}") print(f"task authors -->") print(task_authors_df) print(f"Number of background corpus authors: {len(clustered_authors_df)}") clustered_authors_df = pd.concat([task_authors_df, clustered_authors_df]) print(f"Number of authors after concatenation: {len(clustered_authors_df)}") # Gather the input texts (preserves list-of-strings if any) #texts = background_corpus_df[text_clm].fillna("").tolist() author_texts = ['\n\n'.join(x) for x in clustered_authors_df.fullText.tolist()] print(f"Number of author_texts: {len(author_texts)}") # Create a reproducible JSON serialization of the texts serialized = json.dumps({ "col": text_clm, "texts": author_texts }, sort_keys=True, ensure_ascii=False) # Compute MD5 hash digest = hashlib.md5(serialized.encode("utf-8")).hexdigest() cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") # If cache hit, load and return if os.path.exists(cache_path): print(f"Cache hit...") with open(cache_path, "rb") as f: clustered_authors_df = pickle.load(f) else: # Else compute and cache g2v_feats_df = vectorizer.from_documents(author_texts, batch_size=16) print(f"Number of g2v features: {len(g2v_feats_df)}") print(f"Number of clustered_authors_df.authorID.tolist(): {len(clustered_authors_df.authorID.tolist())}") print(f"Number of g2v_feats_df.to_numpy().tolist(): {len(g2v_feats_df.to_numpy().tolist())}") ids = clustered_authors_df.authorID.tolist() counter = Counter(ids) duplicates = [k for k, v in counter.items() if v > 1] print(f"Duplicate authorIDs: {duplicates}") print(f"Number of duplicates: {len(ids) - len(set(ids))}") author_to_g2v_feats = {x[0]: x[1] for x in zip(clustered_authors_df.authorID.tolist(), g2v_feats_df.to_numpy().tolist())} print(f"Number of authors with g2v features: {len(author_to_g2v_feats)}") # apply normalization vector_std = np.std(list(author_to_g2v_feats.values()), axis=0) vector_mean = np.mean(list(author_to_g2v_feats.values()), axis=0) vector_std[vector_std == 0] = 1.0 author_to_g2v_feats_z_normalized = {x[0]: (x[1] - vector_mean) / vector_std for x in author_to_g2v_feats.items()} print(f"Number of authors with g2v features normalized: {len(author_to_g2v_feats_z_normalized)}") print(f" len of clustered authors df: {len(clustered_authors_df)}") # Add the vectors as a new column of the DataFrame. clustered_authors_df['g2v_vector'] = [{x[1]: x[0] for x in zip(val, g2v_feats_df.columns.tolist())} for val in author_to_g2v_feats_z_normalized.values()] with open(cache_path, "wb") as f: pickle.dump(clustered_authors_df, f) if task_authors_df is not None: task_authors_df = clustered_authors_df[clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())] clustered_authors_df = clustered_authors_df[~clustered_authors_df.authorID.isin(task_authors_df.authorID.tolist())] return clustered_authors_df['g2v_vector'].tolist(), task_authors_df['g2v_vector'].tolist() def get_task_authors_from_background_df(background_df): task_authors_df = background_df[background_df.authorID.isin(["Q_author", "a0_author", "a1_author", "a2_author"])] return task_authors_df def instance_to_df(instance, predicted_author=None, ground_truth_author=None): #create a dataframe of the task authors task_authos_df = pd.DataFrame([ {'authorID': 'Mystery author', 'fullText': instance['Q_fullText'], 'predicted': None, 'ground_truth': None}, {'authorID': 'Candidate Author 1', 'fullText': instance['a0_fullText'], 'predicted': int(predicted_author) == 0, 'ground_truth': int(ground_truth_author) == 0}, {'authorID': 'Candidate Author 2', 'fullText': instance['a1_fullText'], 'predicted': int(predicted_author) == 1, 'ground_truth': int(ground_truth_author) == 1}, {'authorID': 'Candidate Author 3', 'fullText': instance['a2_fullText'], 'predicted': int(predicted_author) == 2, 'ground_truth': int(ground_truth_author) == 2} ]) if type(instance['Q_fullText']) == list: task_authos_df = task_authos_df.groupby('authorID').agg({'fullText': lambda x: list(x)}).reset_index() return task_authos_df def generate_style_embedding(background_corpus_df: pd.DataFrame, text_clm: str, model_name: str) -> pd.DataFrame: """ Generates style embeddings for documents in a background corpus using a specified model. If a row in `text_clm` contains a list of strings, the final embedding for that row is the average of the embeddings of all strings in the list. Args: background_corpus_df (pd.DataFrame): DataFrame containing the corpus. text_clm (str): Name of the column containing the text data (either string or list of strings). model_name (str): Name of the model to use for generating embeddings. Returns: pd.DataFrame: The input DataFrame with a new column for style embeddings. """ from sentence_transformers import SentenceTransformer import torch if model_name not in [ 'gabrielloiseau/LUAR-MUD-sentence-transformers', 'gabrielloiseau/LUAR-CRUD-sentence-transformers', 'miladalsh/light-luar', 'AnnaWegmann/Style-Embedding', ]: print('Model is not supported') return background_corpus_df print(f"Generating style embeddings using {model_name} on column '{text_clm}'...") model = SentenceTransformer(model_name) embedding_dim = model.get_sentence_embedding_dimension() # Heuristic to check if the column contains lists of strings by checking the first valid item. # This assumes the column is homogenous. is_list_column = False if not background_corpus_df.empty: # Get the first non-NaN value to inspect its type series_no_na = background_corpus_df[text_clm].dropna() if not series_no_na.empty: first_valid_item = series_no_na.iloc[0] if isinstance(first_valid_item, list): is_list_column = True if is_list_column: # Flatten all texts into a single list for batch processing texts_to_encode = [] row_lengths = [] for text_list in background_corpus_df[text_clm]: # Ensure we handle None, empty lists, or other non-list types gracefully if isinstance(text_list, list) and text_list: texts_to_encode.extend(text_list) row_lengths.append(len(text_list)) else: row_lengths.append(0) if texts_to_encode: all_embeddings = model.encode(texts_to_encode, convert_to_tensor=True, show_progress_bar=True) else: all_embeddings = torch.empty((0, embedding_dim), device=model.device) # Reconstruct and average embeddings for each row final_embeddings = [] current_pos = 0 for length in row_lengths: if length > 0: row_embeddings = all_embeddings[current_pos:current_pos + length] avg_embedding = torch.mean(row_embeddings, dim=0) final_embeddings.append(avg_embedding.cpu().numpy()) current_pos += length else: final_embeddings.append(np.zeros(embedding_dim)) else: # Column contains single strings texts = background_corpus_df[text_clm].fillna("").tolist() # convert_to_tensor=False is faster if we just need numpy arrays embeddings = model.encode(texts, show_progress_bar=True) final_embeddings = list(embeddings) # Create a clean column name from the model name col_name = f'{model_name.split("/")[-1]}_style_embedding' background_corpus_df[col_name] = final_embeddings return background_corpus_df # ── wrapper with caching ─────────────────────────────────────── def cached_generate_style_embedding(background_corpus_df: pd.DataFrame, text_clm: str, model_name: str) -> pd.DataFrame: """ Wraps `generate_style_embedding`, caching its output in pickle files keyed by an MD5 of (model_name + text list). If the cache exists, loads and returns it instead of recomputing. """ # Gather the input texts (preserves list-of-strings if any) texts = background_corpus_df[text_clm].fillna("").tolist() # Create a reproducible JSON serialization of the texts serialized = json.dumps({ "model": model_name, "col": text_clm, "texts": texts }, sort_keys=True, ensure_ascii=False) # Compute MD5 hash digest = hashlib.md5(serialized.encode("utf-8")).hexdigest() cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") # If cache hit, load and return if os.path.exists(cache_path): print(f"Cache hit for {model_name} on column '{text_clm}'") print(cache_path) with open(cache_path, "rb") as f: return pickle.load(f) # Otherwise, compute, cache, and return df_with_emb = generate_style_embedding(background_corpus_df, text_clm, model_name) print(f"Computing embeddings for {model_name} on column '{text_clm}', saving to {cache_path}") with open(cache_path, "wb") as f: pickle.dump(df_with_emb, f) return df_with_emb def get_style_feats_distribution(documentIDs, style_feats_dict): style_feats = [] for documentId in documentIDs: if documentId not in document_to_style_feats: #print(documentId) continue style_feats+= document_to_style_feats[documentId] tfidf = [style_feats.count(key) * val for key, val in style_feats_dict.items()] return tfidf def get_cluster_top_feats(style_feats_distribution, style_feats_list, top_k=5): sorted_feats = np.argsort(style_feats_distribution)[::-1] top_feats = [style_feats_list[x] for x in sorted_feats[:top_k] if style_feats_distribution[x] > 0] return top_feats def compute_clusters_style_representation( background_corpus_df: pd.DataFrame, cluster_ids: List[Any], other_cluster_ids: List[Any], features_clm_name: str, cluster_label_clm_name: str = 'cluster_label', top_n: int = 10 ) -> List[str]: """ Given a DataFrame with document IDs, cluster IDs, and feature lists, return the top N features that are most important in the specified `cluster_ids` while having low importance in `other_cluster_ids`. Importance is determined by TF-IDF scores. The final score for a feature is (summed TF-IDF in `cluster_ids`) - (summed TF-IDF in `other_cluster_ids`). Parameters: - background_corpus_df: pd.DataFrame. Must contain the columns specified by `cluster_label_clm_name` and `features_clm_name`. The column `features_clm_name` should contain lists of strings (features). - cluster_ids: List of cluster IDs for which to find representative features (target clusters). - other_cluster_ids: List of cluster IDs whose features should be down-weighted. Features prominent in these clusters will have their scores reduced. Pass an empty list or None if no contrastive clusters are needed. - features_clm_name: The name of the column in `background_corpus_df` that contains the list of features for each document. - cluster_label_clm_name: The name of the column in `background_corpus_df` that contains the cluster labels. Defaults to 'cluster_label'. - top_n: Number of top features to return. Returns: - List[str]: A list of feature names. These are up to `top_n` features ranked by their adjusted TF-IDF scores (score in `cluster_ids` minus score in `other_cluster_ids`). Only features with a final adjusted score > 0 are included. """ assert background_corpus_df[features_clm_name].apply( lambda x: isinstance(x, list) and all(isinstance(feat, str) for feat in x) ).all(), f"Column '{features_clm_name}' must contain lists of strings." # Compute TF-IDF on the entire corpus vectorizer = TfidfVectorizer( tokenizer=lambda x: x, preprocessor=lambda x: x, token_pattern=None # Disable default token pattern, treat items in list as tokens ) tfidf_matrix = vectorizer.fit_transform(background_corpus_df[features_clm_name]) feature_names = vectorizer.get_feature_names_out() # Get boolean mask for documents in selected clusters selected_mask = background_corpus_df[cluster_label_clm_name].isin(cluster_ids).to_numpy() if not selected_mask.any(): return [] # No documents found for the given cluster_ids # Subset the TF-IDF matrix using the boolean mask selected_tfidf = tfidf_matrix[selected_mask] # Sum TF-IDF scores across documents for each feature in the target clusters target_feature_scores_sum = selected_tfidf.sum(axis=0).A1 # Convert to 1D array # Initialize adjusted scores with target scores adjusted_feature_scores = target_feature_scores_sum.copy() # If other_cluster_ids are provided and not empty, subtract their TF-IDF sums if other_cluster_ids: # Checks if the list is not None and not empty other_selected_mask = background_corpus_df[cluster_label_clm_name].isin(other_cluster_ids).to_numpy() if other_selected_mask.any(): other_selected_tfidf = tfidf_matrix[other_selected_mask] contrast_feature_scores_sum = other_selected_tfidf.sum(axis=0).A1 # Element-wise subtraction; assumes feature_names aligns for both sums adjusted_feature_scores -= contrast_feature_scores_sum # Map scores to feature names feature_score_dict = dict(zip(feature_names, adjusted_feature_scores)) # Sort features by score sorted_features = sorted(feature_score_dict.items(), key=lambda item: item[1], reverse=True) # Return the names of the top_n features that have a score > 0 top_features = [feature for feature, score in sorted_features if score > 0][:top_n] return top_features def compute_clusters_style_representation_2( background_corpus_df: pd.DataFrame, cluster_ids: List[Any], cluster_label_clm_name: str = 'cluster_label', max_num_feats: int = 5, max_num_documents_per_author=3, max_num_authors=5): """ Call openAI to analyze the common writing style features of the given list of texts """ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x) background_corpus_df = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)] author_texts = background_corpus_df['fullText'].tolist()[:max_num_authors] author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)]) author_names = background_corpus_df[cluster_label_clm_name].tolist()[:max_num_authors] print(f"Number of authors: {len(background_corpus_df)}") print(author_names) print(author_texts) print(f"Number of authors: {len(author_names)}") print(f"Number of authors: {len(author_texts)}") prompt = f"""First identify a list of {max_num_feats} writing style features that are common between the given texts. Second for every author text and style feature, extract all spans that represent the feature. Output for every author all style features with their spans. Author Texts: \"\"\"{author_texts}\"\"\" """ # Compute MD5 hash digest = hashlib.md5(prompt.encode("utf-8")).hexdigest() cache_path = os.path.join(CACHE_DIR, f"{digest}.pkl") # If cache hit, load and return if os.path.exists(cache_path): print(f"Loading authors writing style from cache ...") with open(cache_path, "rb") as f: parsed_response = pickle.load(f) else: # Else compute and cache response = client.chat.completions.create( model="gpt-4o-mini", messages=[ {"role":"assistant","content":"You are a forensic linguistic who knows how to analyze similarites in writing styles."}, {"role":"user","content":prompt}], response_format={"type": "json_schema", "json_schema": {"name": "style_analysis_schema", "schema": to_strict_json_schema(style_analysis_schema)}} ) parsed_response = json.loads(response.choices[0].message.content) with open(cache_path, "wb") as f: pickle.dump(parsed_response, f) return parsed_response def identify_style_features(author_texts: list[str], max_num_feats: int = 5) -> list[str]: client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) prompt = f"""Identify {max_num_feats} writing style features that are commonly found across the following texts. Do not extract spans. Just return the feature names as a list. Author Texts: \"\"\"{chr(10).join(author_texts)}\"\"\" """ def _make_call(): response = client.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "assistant", "content": "You are a forensic linguist specializing in writing styles."}, {"role": "user", "content": prompt} ], response_format={ "type": "json_schema", "json_schema": { "name": "FeatureIdentificationSchema", "schema": to_strict_json_schema(FeatureIdentificationSchema) } } ) return json.loads(response.choices[0].message.content) return retry_call(_make_call, FeatureIdentificationSchema).features def retry_call(call_fn, schema_class, max_attempts=3, wait_sec=2): for attempt in range(max_attempts): try: result = call_fn() # Validate against schema validated = schema_class(**result) return validated except (ValidationError, KeyError, json.JSONDecodeError) as e: print(f"Attempt {attempt + 1} failed with error: {e}") time.sleep(wait_sec) raise RuntimeError("All retry attempts failed for OpenAI call.") def extract_all_spans(authors_df: pd.DataFrame, features: list[str], cluster_label_clm_name: str = 'authorID') -> dict[str, dict[str, list[str]]]: """ For each author, use `generate_feature_spans_cached` to get feature->span mappings. Returns a dict: {author_name: {feature: [spans]}} """ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) spans_by_author = {} for _, row in authors_df.iterrows(): author_name = str(row[cluster_label_clm_name]) print(author_name) role = f"{author_name}" full_text = row['fullText'] spans = generate_feature_spans_cached(client, full_text, features, role) spans_by_author[author_name] = spans return spans_by_author def compute_clusters_style_representation_3( background_corpus_df: pd.DataFrame, cluster_ids: List[Any], cluster_label_clm_name: str = 'authorID', max_num_feats: int = 10, max_num_documents_per_author=3, max_num_authors=5 ): print(f"Computing style representation for visible clusters: {len(cluster_ids)}") # STEP 1: Identify features on 5 visible authors background_corpus_df['fullText'] = background_corpus_df['fullText'].map(lambda x: '\n\n'.join(x[:max_num_documents_per_author]) if isinstance(x, list) else x) background_corpus_df_feat_id = background_corpus_df[background_corpus_df[cluster_label_clm_name].isin(cluster_ids)] author_texts = background_corpus_df_feat_id['fullText'].tolist()[:max_num_authors] author_texts = "\n\n".join(["""Author {}:\n""".format(i+1) + text for i, text in enumerate(author_texts)]) author_names = background_corpus_df_feat_id[cluster_label_clm_name].tolist()[:max_num_authors] print(f"Number of authors: {len(background_corpus_df_feat_id)}") print(author_names) features = identify_style_features(author_texts, max_num_feats=max_num_feats) # STEP 2: Prepare author pool for span extraction span_df = background_corpus_df.iloc[:4] author_names = span_df[cluster_label_clm_name].tolist()[:4] print(f"Number of authors for span detection : {len(span_df)}") print(author_names) spans_by_author = extract_all_spans(span_df, features, cluster_label_clm_name) # Filter out features that are not present in any of the authors filtered_spans_by_author = {x[0] : x[1] for x in spans_by_author.items() if x[0] in {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(cluster_ids))} print('Filtering in features for only the following authors: ', filtered_spans_by_author.keys()) filtered_features = [] for feature in features: found_in_any_author = False for author_name, author_spans in filtered_spans_by_author.items(): if feature in author_spans: found_in_any_author = True break if found_in_any_author: filtered_features.append(feature) features = filtered_features return { "features": features, "spans": spans_by_author } def compute_clusters_g2v_representation( background_corpus_df: pd.DataFrame, author_ids: List[Any], other_author_ids: List[Any], features_clm_name: str, top_n: int = 10, mode: str = "sharedness", sharedness_method: str = "mean_minus_alpha_std", alpha: float = 0.5 ) -> List[str]: selected_mask = background_corpus_df['authorID'].isin(author_ids).to_numpy() if not selected_mask.any(): return [] # No documents found for the given cluster_ids selected_feats = background_corpus_df[selected_mask][features_clm_name].tolist() all_g2v_feats = list(selected_feats[0].keys()) # If the user requested a sharedness-based score, compute it and return top-N. if mode == "sharedness": selected_matrix = np.array([list(x.values()) for x in selected_feats], dtype=float) if sharedness_method == "mean": scores = selected_matrix.mean(axis=0) elif sharedness_method in ("mean_minus_alpha_std", "mean-std", "mean_minus_std"): means = selected_matrix.mean(axis=0) stds = selected_matrix.std(axis=0) scores = means - float(alpha) * stds elif sharedness_method == "min": scores = selected_matrix.min(axis=0) else: # Default fallback to mean-minus-alpha*std if unknown method means = selected_matrix.mean(axis=0) stds = selected_matrix.std(axis=0) scores = means - float(alpha) * stds # Rank and return feature_scores = [(feat, score) for feat, score in zip(all_g2v_feats, scores) if score > 0] feature_scores.sort(key=lambda x: x[1], reverse=True) return [feat for feat, _ in feature_scores[:top_n]] # Contrastive mode (default): compute target mean and subtract contrast mean all_g2v_values = np.array([list(x.values()) for x in selected_feats]).mean(axis=0) other_selected_feats = background_corpus_df[~selected_mask][features_clm_name].tolist() all_g2v_other_feats = list(other_selected_feats[0].keys()) all_g2v_other_values = np.array([list(x.values()) for x in other_selected_feats]).mean(axis=0) final_g2v_feats_values = all_g2v_values - all_g2v_other_values top_g2v_feats = sorted(list(zip(all_g2v_feats, final_g2v_feats_values)), key=lambda x: -x[1]) # Filter out features that are not present in any of the authors selected_authors = {'Mystery author', 'Candidate Author 1', 'Candidate Author 2', 'Candidate Author 3'}.intersection(set(author_ids)) print('Filtering in g2v features for only the following authors: ', selected_authors) authors_g2v_feats = background_corpus_df[background_corpus_df['authorID'].isin(selected_authors)][features_clm_name].tolist() filtered_features = [] for feature, score in top_g2v_feats: found_in_any_author = False for author_g2v_feats in authors_g2v_feats: if author_g2v_feats[feature] > 0: found_in_any_author = True break if found_in_any_author: filtered_features.append(feature) print('Filtered G2V features: ', filtered_features) return filtered_features[:top_n] def generate_interpretable_space_representation(interp_space_path, styles_df_path, feat_clm, output_clm, num_feats=5): styles_df = pd.read_csv(styles_df_path)[[feat_clm, "documentID"]] # A dictionary of style features and their IDF style_feats_agg_df = styles_df.groupby(feat_clm).agg({'documentID': lambda x : len(list(x))}).reset_index() style_feats_agg_df['document_freq'] = style_feats_agg_df.documentID style_to_feats_dfreq = {x[0]: math.log(styles_df.documentID.nunique()/x[1]) for x in zip(style_feats_agg_df[feat_clm].tolist(), style_feats_agg_df.document_freq.tolist())} # A list of style features we work with style_feats_list = style_feats_agg_df[feat_clm].tolist() print('Number of style feats ', len(style_feats_list)) # A list of documents and what list of style features each has doc_style_agg_df = styles_df.groupby('documentID').agg({feat_clm: lambda x : list(x)}).reset_index() document_to_feats_dict = {x[0]: x[1] for x in zip(doc_style_agg_df.documentID.tolist(), doc_style_agg_df[feat_clm].tolist())} # Load the clustering information df = pd.read_pickle(interp_space_path) df = df[df.cluster_label != -1] # A cluster to list of documents clusterd_df = df.groupby('cluster_label').agg({ 'documentID': lambda x: [d_id for doc_ids in x for d_id in doc_ids] }).reset_index() # Filter-in only documents that has a style description clusterd_df['documentID'] = clusterd_df.documentID.apply(lambda documentIDs: [documentID for documentID in documentIDs if documentID in document_to_feats_dict]) # Map from cluster label to list of features through the document information clusterd_df[feat_clm] = clusterd_df.documentID.apply(lambda doc_ids: [f for d_id in doc_ids for f in document_to_feats_dict[d_id]]) def compute_tfidf(row): style_counts = Counter(row[feat_clm]) total_num_styles = sum(style_counts.values()) #print(style_counts, total_num_styles) style_distribution = { style: math.log(1+count) * style_to_feats_dfreq[style] if style in style_to_feats_dfreq else 0 for style, count in style_counts.items() } #TF-IDF return style_distribution def create_tfidf_rep(tfidf_dist, num_feats): style_feats = sorted(tfidf_dist.items(), key=lambda x: -x[1]) top_k_feats = [x[0] for x in style_feats[:num_feats] if str(x[0]) != 'nan'] return top_k_feats clusterd_df[output_clm +'_dist'] = clusterd_df.apply(lambda row: compute_tfidf(row), axis=1) clusterd_df[output_clm] = clusterd_df[output_clm +'_dist'].apply(lambda dist: create_tfidf_rep(dist, num_feats)) return clusterd_df def compute_predicted_author(task_authors_df: pd.DataFrame, col_name: str) -> int: """ Computes the predicted author based on the style features. """ print("Computing predicted author using LUAR-MUD-style embeddings...") # Extract LUAR embeddings from task authors dataframe mystery_embedding = np.array(task_authors_df.iloc[0][col_name]).reshape(1, -1) candidate_embeddings = np.array([ task_authors_df.iloc[1][col_name], task_authors_df.iloc[2][col_name], task_authors_df.iloc[3][col_name] ]) # Compute cosine similarities similarities = cosine_similarity(mystery_embedding, candidate_embeddings)[0] predicted_author = int(np.argmax(similarities)) print(f"Predicted author is Candidate {predicted_author + 1}") return predicted_author if __name__ == "__main__": background_corpus = pd.read_pickle('../datasets/luar_interp_space_cluster_19/train_authors.pkl') print(background_corpus.columns) print(background_corpus[['authorID', 'fullText', 'cluster_label']].head()) # # Example: Find features for clusters [2,3,4] that are NOT prominent in cluster [1] # feats = compute_clusters_style_representation( # background_corpus_df=background_corpus, # cluster_ids=['00005a5c-5c06-3a36-37f9-53c6422a31d8',], # other_cluster_ids=[], # Pass the contrastive cluster IDs here # cluster_label_clm_name='authorID', # features_clm_name='final_attribute_name' # ) # print(feats) generate_style_embedding(background_corpus, 'fullText', 'AnnaWegmann/Style-Embedding') print(background_corpus.columns)