|
import streamlit as st |
|
from streamlit_chat import message |
|
from langchain_openai import ChatOpenAI |
|
from langchain.chains import ConversationChain |
|
from langchain.chains.conversation.memory import (ConversationBufferMemory, |
|
ConversationSummaryMemory, |
|
ConversationBufferWindowMemory |
|
|
|
) |
|
|
|
|
|
|
|
if 'conversation' not in st.session_state: |
|
st.session_state['conversation'] =None |
|
if 'messages' not in st.session_state: |
|
st.session_state['messages'] =[] |
|
if 'API_Key' not in st.session_state: |
|
st.session_state['OPENAI_API_KEY'] ='' |
|
|
|
|
|
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") |
|
st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.title("😎") |
|
st.session_state['OPENAI_API_KEY']= st.sidebar.text_input("What's your API key?",type="password") |
|
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") |
|
if summarise_button: |
|
summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer) |
|
|
|
|
|
|
|
def getresponse(userInput, api_key): |
|
|
|
if st.session_state['conversation'] is None: |
|
|
|
|
|
llm = ChatOpenAI( |
|
temperature=0, |
|
openai_api_key=api_key, |
|
model_name='gpt-3.5-turbo' |
|
) |
|
|
|
|
|
st.session_state['conversation'] = ConversationChain( |
|
llm=llm, |
|
verbose=True, |
|
memory=ConversationSummaryMemory(llm=llm) |
|
) |
|
|
|
|
|
response=st.session_state['conversation'].predict(input=userInput) |
|
print(st.session_state['conversation'].memory.buffer) |
|
|
|
return response |
|
|
|
response_container = st.container() |
|
|
|
container = st.container() |
|
|
|
with container: |
|
with st.form(key='my_form', clear_on_submit=True): |
|
user_input = st.text_area("Your question goes here:", key='input', height=100) |
|
submit_button = st.form_submit_button(label='Send') |
|
|
|
if submit_button: |
|
|
|
st.session_state['messages'].append(user_input) |
|
|
|
|
|
model_response = getresponse(user_input,st.session_state['OPENAI_API_KEY']) |
|
st.session_state['messages'].append(model_response) |
|
|
|
with response_container: |
|
for i in range(len(st.session_state['messages'])): |
|
if (i % 2) == 0: |
|
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') |
|
else: |
|
message(st.session_state['messages'][i], key=str(i) + '_AI') |
|
|