import streamlit as st from streamlit_chat import message from langchain_openai import ChatOpenAI from langchain.chains import ConversationChain from langchain.chains.conversation.memory import (ConversationBufferMemory, ConversationSummaryMemory, ConversationBufferWindowMemory ) # 3 variables in session_state if 'conversation' not in st.session_state: st.session_state['conversation'] =None if 'messages' not in st.session_state: st.session_state['messages'] =[] if 'API_Key' not in st.session_state: st.session_state['OPENAI_API_KEY'] ='' # Setting page title and header st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") st.markdown("

How can I assist you?

", unsafe_allow_html=True) st.sidebar.title("😎") st.session_state['OPENAI_API_KEY']= st.sidebar.text_input("What's your API key?",type="password") summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") if summarise_button: summarise_placeholder = st.sidebar.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer) #summarise_placeholder.write("Nice chatting with you my friend ❤️:\n\n"+st.session_state['conversation'].memory.buffer) def getresponse(userInput, api_key): if st.session_state['conversation'] is None: # create a LLM llm = ChatOpenAI( temperature=0, openai_api_key=api_key, model_name='gpt-3.5-turbo' ) # store the placeholder as "conversation" in session_state st.session_state['conversation'] = ConversationChain( llm=llm, verbose=True, memory=ConversationSummaryMemory(llm=llm) ) # call st.session_state['conversation'] to create dialogues response=st.session_state['conversation'].predict(input=userInput) print(st.session_state['conversation'].memory.buffer) return response response_container = st.container() # Here we will have a container for user input text box container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_area("Your question goes here:", key='input', height=100) submit_button = st.form_submit_button(label='Send') if submit_button: # store the user input text into st.session_state['messages'] st.session_state['messages'].append(user_input) # getresponse is the function we just created, a wrapper of predict() # model_response = getresponse(user_input,st.session_state['API_Key']) model_response = getresponse(user_input,st.session_state['OPENAI_API_KEY']) st.session_state['messages'].append(model_response) with response_container: for i in range(len(st.session_state['messages'])): if (i % 2) == 0: message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') else: message(st.session_state['messages'][i], key=str(i) + '_AI')