Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
from typing import Optional | |
# import spaces #[uncomment to use ZeroGPU] | |
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline | |
from diffusers import ControlNetModel | |
from peft import PeftModel, LoraConfig | |
from rembg import new_session, remove | |
from PIL import Image as PILImage | |
import cv2 | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
import os | |
# import torch | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
CONTROL_MODE_MODEL = { | |
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny", | |
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p", | |
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd", | |
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed", | |
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth", | |
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae", | |
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble", | |
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg", | |
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose", | |
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart", | |
} | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt: str, | |
negative_prompt : str, | |
width, | |
height, | |
lscale=0.0, | |
remove_background=False, | |
controlnet_enabled=False, | |
controlnet_strength=0.0, | |
controlnet_mode=None, | |
controlnet_image=None, | |
ip_adapter_enabled=False, | |
ip_adapter_scale=0.0, | |
ip_adapter_image=None, | |
model_id: Optional[str] = "CompVis/stable-diffusion-v1-4", | |
seed: Optional[int] = 42, | |
guidance_scale : Optional[int] = 7, | |
num_inference_steps : Optional[int] = 20, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
generator = torch.Generator().manual_seed(seed) | |
if controlnet_enabled: | |
if not controlnet_image : | |
raise ValueError("controlnet_enabled set to True, but controlnet_image not given") | |
else: | |
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype) | |
if model_id == "SD-v1-5 + Lora" : | |
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype) | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype) | |
else: | |
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype) | |
else: | |
if model_id == "SD-v1-5 + Lora" : | |
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype) | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype) | |
else: | |
pipe=StableDiffusionPipeline.from_pretrained(model_id) | |
if ip_adapter_enabled: | |
ip_adapter_scale = float(ip_adapter_scale) | |
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype) | |
pipe.set_ip_adapter_scale(ip_adapter_scale) | |
if controlnet_image!= None: | |
controlnet_image = np.array(controlnet_image) | |
low_threshold = 100 | |
high_threshold = 200 | |
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold) | |
controlnet_image = controlnet_image[:, :, None] | |
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2) | |
controlnet_image = PILImage.fromarray(controlnet_image) | |
pipe = pipe.to(device) | |
image = pipe( | |
prompt=prompt, | |
image=controlnet_image, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
cross_attention_kwargs={"scale": lscale}, | |
controlnet_conditioning_scale=controlnet_strength, | |
ip_adapter_image=ip_adapter_image, | |
).images[0] | |
if remove_background: | |
image = remove(image) | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 880px; | |
} | |
""" | |
default_model_id_choice = [ | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"CompVis/stable-diffusion-v1-4", | |
"SD-v1-5 + Lora", | |
"nota-ai/bk-sdm-small", | |
] | |
def update_controlnet_visibility(controlnet_enabled): | |
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled) | |
def update_ip_adapter_visibility(ip_adapter_enabled): | |
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled) | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
model_id = gr.Dropdown( | |
label="Model Selection", | |
choices=default_model_id_choice, | |
value="SD-v1-5 + Lora", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Row(): | |
remove_background = gr.Checkbox(label="Remove Background", value=False) | |
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False) | |
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False) | |
with gr.Accordion("ControlNet Settings", open=False): | |
gr.Markdown("Enable ControlNet to use settings", visible=True) | |
with gr.Row(): | |
controlNet_strength = gr.Slider( | |
label="ControlNet scale", | |
minimum=0.0, maximum=1.0, step=0.05, value=0.75, | |
visible=False, | |
interactive=True, | |
) | |
controlNet_mode = gr.Dropdown( | |
label="ControlNet Mode", | |
choices=list(CONTROL_MODE_MODEL.keys()), | |
visible=False, | |
interactive=True, | |
) | |
controlNet_image = gr.Image(label="ControlNet Image", type="pil", | |
interactive=True, visible=False) | |
with gr.Accordion("IP-Adapter Settings", open=False): | |
gr.Markdown("Enable IP-Adapter to use settings", visible=True) | |
with gr.Row(): | |
ip_adapter_scale = gr.Slider( | |
label="IP-Adapter Scale", | |
minimum=0.0, maximum=2.0, step=0.05, value=1.0, | |
visible=False, | |
interactive=True, | |
) | |
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.0, | |
info="Adjust the influence of the LoRA weights", | |
interactive=True, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=10.0, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=30, # Replace with defaults that work for your model | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
lora_scale, | |
remove_background, | |
controlnet_enabled, | |
controlNet_strength, | |
controlNet_mode, | |
controlNet_image, | |
ip_adapter_enabled, | |
ip_adapter_scale, | |
ip_adapter_image, | |
model_id, | |
seed, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
controlnet_enabled.change( | |
fn=update_controlnet_visibility, | |
inputs=[controlnet_enabled], | |
outputs=[controlNet_strength, controlNet_mode, controlNet_image], | |
) | |
ip_adapter_enabled.change( | |
fn=update_ip_adapter_visibility, | |
inputs=[ip_adapter_enabled], | |
outputs=[ip_adapter_scale, ip_adapter_image], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |