Emilichka
error_fix
8f4997e
import gradio as gr
import numpy as np
import random
from typing import Optional
# import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
from diffusers import ControlNetModel
from peft import PeftModel, LoraConfig
from rembg import new_session, remove
from PIL import Image as PILImage
import cv2
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
import os
# import torch
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
CONTROL_MODE_MODEL = {
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny",
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd",
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth",
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg",
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose",
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
}
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt: str,
negative_prompt : str,
width,
height,
lscale=0.0,
remove_background=False,
controlnet_enabled=False,
controlnet_strength=0.0,
controlnet_mode=None,
controlnet_image=None,
ip_adapter_enabled=False,
ip_adapter_scale=0.0,
ip_adapter_image=None,
model_id: Optional[str] = "CompVis/stable-diffusion-v1-4",
seed: Optional[int] = 42,
guidance_scale : Optional[int] = 7,
num_inference_steps : Optional[int] = 20,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator().manual_seed(seed)
if controlnet_enabled:
if not controlnet_image :
raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
else:
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype)
if model_id == "SD-v1-5 + Lora" :
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
else:
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
else:
if model_id == "SD-v1-5 + Lora" :
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
else:
pipe=StableDiffusionPipeline.from_pretrained(model_id)
if ip_adapter_enabled:
ip_adapter_scale = float(ip_adapter_scale)
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype)
pipe.set_ip_adapter_scale(ip_adapter_scale)
if controlnet_image!= None:
controlnet_image = np.array(controlnet_image)
low_threshold = 100
high_threshold = 200
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
controlnet_image = controlnet_image[:, :, None]
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
controlnet_image = PILImage.fromarray(controlnet_image)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
image=controlnet_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lscale},
controlnet_conditioning_scale=controlnet_strength,
ip_adapter_image=ip_adapter_image,
).images[0]
if remove_background:
image = remove(image)
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 880px;
}
"""
default_model_id_choice = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
"SD-v1-5 + Lora",
"nota-ai/bk-sdm-small",
]
def update_controlnet_visibility(controlnet_enabled):
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
def update_ip_adapter_visibility(ip_adapter_enabled):
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
model_id = gr.Dropdown(
label="Model Selection",
choices=default_model_id_choice,
value="SD-v1-5 + Lora",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Row():
remove_background = gr.Checkbox(label="Remove Background", value=False)
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
with gr.Accordion("ControlNet Settings", open=False):
gr.Markdown("Enable ControlNet to use settings", visible=True)
with gr.Row():
controlNet_strength = gr.Slider(
label="ControlNet scale",
minimum=0.0, maximum=1.0, step=0.05, value=0.75,
visible=False,
interactive=True,
)
controlNet_mode = gr.Dropdown(
label="ControlNet Mode",
choices=list(CONTROL_MODE_MODEL.keys()),
visible=False,
interactive=True,
)
controlNet_image = gr.Image(label="ControlNet Image", type="pil",
interactive=True, visible=False)
with gr.Accordion("IP-Adapter Settings", open=False):
gr.Markdown("Enable IP-Adapter to use settings", visible=True)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="IP-Adapter Scale",
minimum=0.0, maximum=2.0, step=0.05, value=1.0,
visible=False,
interactive=True,
)
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Adjust the influence of the LoRA weights",
interactive=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=10.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
lora_scale,
remove_background,
controlnet_enabled,
controlNet_strength,
controlNet_mode,
controlNet_image,
ip_adapter_enabled,
ip_adapter_scale,
ip_adapter_image,
model_id,
seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
controlnet_enabled.change(
fn=update_controlnet_visibility,
inputs=[controlnet_enabled],
outputs=[controlNet_strength, controlNet_mode, controlNet_image],
)
ip_adapter_enabled.change(
fn=update_ip_adapter_visibility,
inputs=[ip_adapter_enabled],
outputs=[ip_adapter_scale, ip_adapter_image],
)
if __name__ == "__main__":
demo.launch(share=True)