Spaces:
Sleeping
Sleeping
File size: 10,810 Bytes
6dd1f69 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 97d44ef 6dd1f69 97d44ef 6dd1f69 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 c4db5c9 6dd1f69 97d44ef c4db5c9 97d44ef c4db5c9 97d44ef c4db5c9 97d44ef c4db5c9 97d44ef c4db5c9 97d44ef c4db5c9 8f4997e c4db5c9 6dd1f69 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 97d44ef 6dd1f69 c4db5c9 6dd1f69 c4db5c9 6dd1f69 c4db5c9 6dd1f69 c4db5c9 6dd1f69 97d44ef 6dd1f69 97d44ef c4db5c9 97d44ef 6dd1f69 97d44ef 6dd1f69 97d44ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import gradio as gr
import numpy as np
import random
from typing import Optional
# import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
from diffusers import ControlNetModel
from peft import PeftModel, LoraConfig
from rembg import new_session, remove
from PIL import Image as PILImage
import cv2
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
import os
# import torch
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
CONTROL_MODE_MODEL = {
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny",
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd",
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth",
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg",
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose",
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
}
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt: str,
negative_prompt : str,
width,
height,
lscale=0.0,
remove_background=False,
controlnet_enabled=False,
controlnet_strength=0.0,
controlnet_mode=None,
controlnet_image=None,
ip_adapter_enabled=False,
ip_adapter_scale=0.0,
ip_adapter_image=None,
model_id: Optional[str] = "CompVis/stable-diffusion-v1-4",
seed: Optional[int] = 42,
guidance_scale : Optional[int] = 7,
num_inference_steps : Optional[int] = 20,
progress=gr.Progress(track_tqdm=True),
):
generator = torch.Generator().manual_seed(seed)
if controlnet_enabled:
if not controlnet_image :
raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
else:
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype)
if model_id == "SD-v1-5 + Lora" :
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
else:
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
else:
if model_id == "SD-v1-5 + Lora" :
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
else:
pipe=StableDiffusionPipeline.from_pretrained(model_id)
if ip_adapter_enabled:
ip_adapter_scale = float(ip_adapter_scale)
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype)
pipe.set_ip_adapter_scale(ip_adapter_scale)
if controlnet_image!= None:
controlnet_image = np.array(controlnet_image)
low_threshold = 100
high_threshold = 200
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
controlnet_image = controlnet_image[:, :, None]
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
controlnet_image = PILImage.fromarray(controlnet_image)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
image=controlnet_image,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
cross_attention_kwargs={"scale": lscale},
controlnet_conditioning_scale=controlnet_strength,
ip_adapter_image=ip_adapter_image,
).images[0]
if remove_background:
image = remove(image)
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 880px;
}
"""
default_model_id_choice = [
"stable-diffusion-v1-5/stable-diffusion-v1-5",
"CompVis/stable-diffusion-v1-4",
"SD-v1-5 + Lora",
"nota-ai/bk-sdm-small",
]
def update_controlnet_visibility(controlnet_enabled):
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
def update_ip_adapter_visibility(ip_adapter_enabled):
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
model_id = gr.Dropdown(
label="Model Selection",
choices=default_model_id_choice,
value="SD-v1-5 + Lora",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Row():
remove_background = gr.Checkbox(label="Remove Background", value=False)
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
with gr.Accordion("ControlNet Settings", open=False):
gr.Markdown("Enable ControlNet to use settings", visible=True)
with gr.Row():
controlNet_strength = gr.Slider(
label="ControlNet scale",
minimum=0.0, maximum=1.0, step=0.05, value=0.75,
visible=False,
interactive=True,
)
controlNet_mode = gr.Dropdown(
label="ControlNet Mode",
choices=list(CONTROL_MODE_MODEL.keys()),
visible=False,
interactive=True,
)
controlNet_image = gr.Image(label="ControlNet Image", type="pil",
interactive=True, visible=False)
with gr.Accordion("IP-Adapter Settings", open=False):
gr.Markdown("Enable IP-Adapter to use settings", visible=True)
with gr.Row():
ip_adapter_scale = gr.Slider(
label="IP-Adapter Scale",
minimum=0.0, maximum=2.0, step=0.05, value=1.0,
visible=False,
interactive=True,
)
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
info="Adjust the influence of the LoRA weights",
interactive=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=10.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
lora_scale,
remove_background,
controlnet_enabled,
controlNet_strength,
controlNet_mode,
controlNet_image,
ip_adapter_enabled,
ip_adapter_scale,
ip_adapter_image,
model_id,
seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
controlnet_enabled.change(
fn=update_controlnet_visibility,
inputs=[controlnet_enabled],
outputs=[controlNet_strength, controlNet_mode, controlNet_image],
)
ip_adapter_enabled.change(
fn=update_ip_adapter_visibility,
inputs=[ip_adapter_enabled],
outputs=[ip_adapter_scale, ip_adapter_image],
)
if __name__ == "__main__":
demo.launch(share=True) |