File size: 10,810 Bytes
6dd1f69
 
 
97d44ef
6dd1f69
 
97d44ef
 
 
c4db5c9
 
 
97d44ef
 
6dd1f69
 
 
 
 
 
 
 
 
97d44ef
 
6dd1f69
 
 
 
 
97d44ef
 
 
 
 
 
 
 
 
 
 
 
 
6dd1f69
 
97d44ef
 
6dd1f69
 
97d44ef
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
 
 
6dd1f69
 
c4db5c9
6dd1f69
 
97d44ef
 
 
 
c4db5c9
97d44ef
 
c4db5c9
 
97d44ef
 
 
 
 
 
c4db5c9
 
97d44ef
 
 
 
 
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
 
 
c4db5c9
97d44ef
 
 
c4db5c9
 
 
 
 
 
 
 
 
 
8f4997e
c4db5c9
 
 
 
 
 
6dd1f69
 
 
 
 
 
 
 
 
 
 
 
 
97d44ef
6dd1f69
 
 
97d44ef
 
 
 
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
6dd1f69
 
 
 
97d44ef
 
 
 
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
 
6dd1f69
 
 
 
 
 
 
 
 
 
 
 
 
97d44ef
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd1f69
 
 
 
 
 
 
97d44ef
 
 
 
 
 
 
 
6dd1f69
 
 
 
 
 
 
c4db5c9
6dd1f69
 
 
 
 
 
 
c4db5c9
6dd1f69
 
 
 
 
 
 
 
c4db5c9
6dd1f69
 
 
 
 
 
 
c4db5c9
6dd1f69
 
 
97d44ef
6dd1f69
 
 
 
 
 
 
 
97d44ef
c4db5c9
97d44ef
 
 
 
 
 
 
 
 
6dd1f69
 
 
 
 
 
97d44ef
 
 
 
 
 
 
 
 
 
 
 
6dd1f69
97d44ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import gradio as gr
import numpy as np
import random
from typing import Optional

# import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
from diffusers import ControlNetModel
from peft import PeftModel, LoraConfig
from rembg import new_session, remove

from PIL import Image as PILImage
import cv2

import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

import os
# import torch

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


CONTROL_MODE_MODEL = {
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny",
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd",
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth",
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg",
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose",
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
}

# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt: str,
    negative_prompt : str,
    width,
    height,
    lscale=0.0,
    remove_background=False,
    controlnet_enabled=False,
    controlnet_strength=0.0,
    controlnet_mode=None,
    controlnet_image=None,
    ip_adapter_enabled=False,
    ip_adapter_scale=0.0,
    ip_adapter_image=None,
    model_id: Optional[str]  = "CompVis/stable-diffusion-v1-4",
    seed: Optional[int] = 42,
    guidance_scale : Optional[int] = 7,
    num_inference_steps : Optional[int] = 20,
    progress=gr.Progress(track_tqdm=True),
):

    generator = torch.Generator().manual_seed(seed)

    if controlnet_enabled:
        if not controlnet_image :
            raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
        else:
            controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode),torch_dtype=torch_dtype)
        if model_id == "SD-v1-5 + Lora" :
            pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
            pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
            pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)

        else:
            pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
    else:
        if model_id == "SD-v1-5 + Lora" :
            pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
            pipe.unet = PeftModel.from_pretrained(pipe.unet , "Emilichcka/diffusion_lora_funny_cat", subfolder="unet", torch_dtype=torch_dtype)
            pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder,"Emilichcka/diffusion_lora_funny_cat", subfolder="text_encoder", torch_dtype=torch_dtype)
        else:
            pipe=StableDiffusionPipeline.from_pretrained(model_id)

    if ip_adapter_enabled:
            ip_adapter_scale = float(ip_adapter_scale)
            pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin", torch_dtype=torch_dtype)
            pipe.set_ip_adapter_scale(ip_adapter_scale)

    if controlnet_image!= None:
      controlnet_image = np.array(controlnet_image)

      low_threshold = 100
      high_threshold = 200

      controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
      controlnet_image = controlnet_image[:, :, None]
      controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
      controlnet_image = PILImage.fromarray(controlnet_image)

    pipe = pipe.to(device)


    image = pipe(
        prompt=prompt,
        image=controlnet_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        cross_attention_kwargs={"scale": lscale},
        controlnet_conditioning_scale=controlnet_strength,
        ip_adapter_image=ip_adapter_image,
    ).images[0]

    if remove_background:
      image = remove(image)

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 880px;
}
"""

default_model_id_choice = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "CompVis/stable-diffusion-v1-4",
    "SD-v1-5 + Lora",
    "nota-ai/bk-sdm-small",

]

def update_controlnet_visibility(controlnet_enabled):
    return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)

def update_ip_adapter_visibility(ip_adapter_enabled):
    return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")

        with gr.Row():
            model_id = gr.Dropdown(
            label="Model Selection",
            choices=default_model_id_choice,
            value="SD-v1-5 + Lora",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Row():
            remove_background = gr.Checkbox(label="Remove Background", value=False)
            controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
            ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)

        with gr.Accordion("ControlNet Settings", open=False):
            gr.Markdown("Enable ControlNet to use settings", visible=True)
            with gr.Row():
                controlNet_strength = gr.Slider(
                    label="ControlNet scale",
                    minimum=0.0, maximum=1.0, step=0.05, value=0.75,
                    visible=False,
                    interactive=True,
                )

                controlNet_mode = gr.Dropdown(
                    label="ControlNet Mode",
                    choices=list(CONTROL_MODE_MODEL.keys()),
                    visible=False,
                    interactive=True,
                )

            controlNet_image = gr.Image(label="ControlNet Image", type="pil",
                                        interactive=True, visible=False)

        with gr.Accordion("IP-Adapter Settings", open=False):
            gr.Markdown("Enable IP-Adapter to use settings", visible=True)
            with gr.Row():
                ip_adapter_scale = gr.Slider(
                    label="IP-Adapter Scale",
                    minimum=0.0, maximum=2.0, step=0.05, value=1.0,
                    visible=False,
                    interactive=True,
                )

            ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            lora_scale = gr.Slider(
                label="LoRA Scale",
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                info="Adjust the influence of the LoRA weights",
                interactive=True,
            )
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=10.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            lora_scale,
            remove_background,
            controlnet_enabled,
            controlNet_strength,
            controlNet_mode,
            controlNet_image,
            ip_adapter_enabled,
            ip_adapter_scale,
            ip_adapter_image,
            model_id,
            seed,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

    controlnet_enabled.change(
        fn=update_controlnet_visibility,
        inputs=[controlnet_enabled],
        outputs=[controlNet_strength, controlNet_mode, controlNet_image],
    )

    ip_adapter_enabled.change(
        fn=update_ip_adapter_visibility,
        inputs=[ip_adapter_enabled],
        outputs=[ip_adapter_scale, ip_adapter_image],
    )

if __name__ == "__main__":
    demo.launch(share=True)