Spaces:
Sleeping
Sleeping
Emilichka
commited on
Commit
·
97d44ef
1
Parent(s):
fb83555
final_app_py
Browse files
app.py
CHANGED
@@ -1,52 +1,122 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
width,
|
31 |
height,
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
if
|
37 |
-
|
38 |
-
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
return image, seed
|
52 |
|
@@ -60,14 +130,42 @@ examples = [
|
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
@@ -81,24 +179,59 @@ with gr.Blocks(css=css) as demo:
|
|
81 |
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
|
|
87 |
max_lines=1,
|
88 |
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
label="
|
94 |
-
minimum=0,
|
95 |
-
maximum=
|
96 |
-
step=1,
|
97 |
-
value=0,
|
|
|
|
|
98 |
)
|
99 |
-
|
100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
-
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
@@ -122,7 +255,7 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
|
128 |
num_inference_steps = gr.Slider(
|
@@ -130,25 +263,46 @@ with gr.Blocks(css=css) as demo:
|
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
prompt,
|
142 |
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
width,
|
146 |
height,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
guidance_scale,
|
148 |
num_inference_steps,
|
149 |
],
|
150 |
outputs=[result, seed],
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from typing import Optional
|
5 |
|
6 |
# import spaces #[uncomment to use ZeroGPU]
|
7 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline
|
8 |
+
from diffusers import ControlNetModel
|
9 |
+
from peft import PeftModel, LoraConfig
|
10 |
+
from PIL import Image
|
11 |
+
import cv2
|
12 |
+
|
13 |
import torch
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
|
17 |
if torch.cuda.is_available():
|
18 |
torch_dtype = torch.float16
|
19 |
else:
|
20 |
torch_dtype = torch.float32
|
21 |
|
22 |
+
import os
|
23 |
+
# import torch
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
|
29 |
+
CONTROL_MODE_MODEL = {
|
30 |
+
"Canny Ege Detection" : "lllyasviel/control_v11p_sd15_canny",
|
31 |
+
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p",
|
32 |
+
"M-LSD Line detection" : "lllyasviel/control_v11p_sd15_mlsd",
|
33 |
+
"HED edge detection (soft edge)" : "lllyasviel/control_sd15_hed",
|
34 |
+
"Midas depth estimationn" : "lllyasviel/control_v11f1p_sd15_depth",
|
35 |
+
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae",
|
36 |
+
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble",
|
37 |
+
"Semantic segmentation" : "lllyasviel/control_v11p_sd15_seg",
|
38 |
+
"OpenPose pose detection" : "lllyasviel/control_v11p_sd15_openpose",
|
39 |
+
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart",
|
40 |
+
}
|
41 |
+
|
42 |
# @spaces.GPU #[uncomment to use ZeroGPU]
|
43 |
def infer(
|
44 |
+
prompt: str,
|
45 |
+
negative_prompt : str,
|
|
|
|
|
46 |
width,
|
47 |
height,
|
48 |
+
lscale=0.0,
|
49 |
+
controlnet_enabled=False,
|
50 |
+
controlnet_strength=0.0,
|
51 |
+
controlnet_mode=None,
|
52 |
+
controlnet_image=None,
|
53 |
+
ip_adapter_enabled=False,
|
54 |
+
ip_adapter_scale=0.0,
|
55 |
+
ip_adapter_image=None,
|
56 |
+
model_id: Optional[str] = "CompVis/stable-diffusion-v1-4",
|
57 |
+
seed: Optional[int] = 42,
|
58 |
+
guidance_scale : Optional[int] = 7,
|
59 |
+
num_inference_steps : Optional[int] = 20,
|
60 |
progress=gr.Progress(track_tqdm=True),
|
61 |
):
|
62 |
+
# if model_id != "CompVis/stable-diffusion-v1-4":
|
63 |
+
# raise ValueError("The submitted model is not supported")
|
|
|
64 |
generator = torch.Generator().manual_seed(seed)
|
65 |
|
66 |
+
if controlnet_enabled:
|
67 |
+
if not controlnet_image :
|
68 |
+
raise ValueError("controlnet_enabled set to True, but controlnet_image not given")
|
69 |
+
else:
|
70 |
+
controlnet_model = ControlNetModel.from_pretrained(CONTROL_MODE_MODEL.get(controlnet_mode))
|
71 |
+
if model_id == "SD-v1-5 + Lora" :
|
72 |
+
pipe=StableDiffusionControlNetPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",controlnet=controlnet_model, torch_dtype=torch_dtype)
|
73 |
+
pipe.unet = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "./unet", torch_dtype=torch_dtype)
|
74 |
+
pipe.text_encoder = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "./text_encoder", torch_dtype=torch_dtype)
|
75 |
+
|
76 |
+
else:
|
77 |
+
pipe=StableDiffusionControlNetPipeline.from_pretrained(model_id, controlnet=controlnet_model, torch_dtype=torch_dtype)
|
78 |
+
else:
|
79 |
+
if model_id == "SD-v1-5 + Lora" :
|
80 |
+
pipe=StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5",torch_dtype=torch_dtype)
|
81 |
+
pipe.unet = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "./unet", torch_dtype=torch_dtype)
|
82 |
+
pipe.text_encoder = PeftModel.from_pretrained("Emilichcka/diffusion_lora_funny_cat", "./text_encoder", torch_dtype=torch_dtype)
|
83 |
+
else:
|
84 |
+
pipe=StableDiffusionPipeline.from_pretrained(model_id)
|
85 |
+
|
86 |
+
if ip_adapter_enabled:
|
87 |
+
ip_adapter_scale = float(ip_adapter_scale)
|
88 |
+
pipe.load_ip_adapter("h94/IP-Adapter",subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
89 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
90 |
+
|
91 |
+
if controlnet_image!= None:
|
92 |
+
controlnet_image = np.array(controlnet_image)
|
93 |
+
|
94 |
+
low_threshold = 100
|
95 |
+
high_threshold = 200
|
96 |
+
|
97 |
+
controlnet_image = cv2.Canny(controlnet_image, low_threshold, high_threshold)
|
98 |
+
controlnet_image = controlnet_image[:, :, None]
|
99 |
+
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2)
|
100 |
+
controlnet_image = Image.fromarray(controlnet_image)
|
101 |
+
|
102 |
+
pipe = pipe.to(device)
|
103 |
+
|
104 |
+
try:
|
105 |
+
image = pipe(
|
106 |
+
prompt=prompt,
|
107 |
+
image=controlnet_image,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
guidance_scale=guidance_scale,
|
110 |
+
num_inference_steps=num_inference_steps,
|
111 |
+
width=width,
|
112 |
+
height=height,
|
113 |
+
generator=generator,
|
114 |
+
ross_attention_kwargs={"scale": float(lscale)},
|
115 |
+
controlnet_conditioning_scale=controlnet_strength,
|
116 |
+
ip_adapter_image=ip_adapter_image,
|
117 |
+
).images[0]
|
118 |
+
except Exception as e:
|
119 |
+
raise gr.Error(f"Ошибка при генерации изображения: {e}")
|
120 |
|
121 |
return image, seed
|
122 |
|
|
|
130 |
css = """
|
131 |
#col-container {
|
132 |
margin: 0 auto;
|
133 |
+
max-width: 880px;
|
134 |
}
|
135 |
"""
|
136 |
|
137 |
+
default_model_id_choice = [
|
138 |
+
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
139 |
+
"CompVis/stable-diffusion-v1-4",
|
140 |
+
"SD-v1-5 + Lora",
|
141 |
+
|
142 |
+
]
|
143 |
+
|
144 |
+
def update_controlnet_visibility(controlnet_enabled):
|
145 |
+
return gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled), gr.update(visible=controlnet_enabled)
|
146 |
+
|
147 |
+
def update_ip_adapter_visibility(ip_adapter_enabled):
|
148 |
+
return gr.update(visible=ip_adapter_enabled), gr.update(visible=ip_adapter_enabled)
|
149 |
+
|
150 |
with gr.Blocks(css=css) as demo:
|
151 |
with gr.Column(elem_id="col-container"):
|
152 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
153 |
|
154 |
+
with gr.Row():
|
155 |
+
model_id = gr.Dropdown(
|
156 |
+
label="Model Selection",
|
157 |
+
choices=default_model_id_choice,
|
158 |
+
value="CompVis/stable-diffusion-v1-4",
|
159 |
+
)
|
160 |
+
|
161 |
+
seed = gr.Slider(
|
162 |
+
label="Seed",
|
163 |
+
minimum=0,
|
164 |
+
maximum=MAX_SEED,
|
165 |
+
step=1,
|
166 |
+
value=42,
|
167 |
+
)
|
168 |
+
|
169 |
with gr.Row():
|
170 |
prompt = gr.Text(
|
171 |
label="Prompt",
|
|
|
179 |
|
180 |
result = gr.Image(label="Result", show_label=False)
|
181 |
|
182 |
+
with gr.Row():
|
183 |
+
controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False)
|
184 |
+
ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False)
|
185 |
+
|
186 |
+
with gr.Accordion("ControlNet Settings", open=False):
|
187 |
+
gr.Markdown("Enable ControlNet to use settings", visible=True)
|
188 |
+
with gr.Row():
|
189 |
+
controlNet_strength = gr.Slider(
|
190 |
+
label="ControlNet scale",
|
191 |
+
minimum=0.0, maximum=1.0, step=0.05, value=0.75,
|
192 |
+
visible=False,
|
193 |
+
interactive=True,
|
194 |
+
)
|
195 |
+
|
196 |
+
controlNet_mode = gr.Dropdown(
|
197 |
+
label="ControlNet Mode",
|
198 |
+
choices=list(CONTROL_MODE_MODEL.keys()),
|
199 |
+
visible=False,
|
200 |
+
interactive=True,
|
201 |
+
)
|
202 |
+
|
203 |
+
controlNet_image = gr.Image(label="ControlNet Image", type="pil",
|
204 |
+
interactive=True, visible=False)
|
205 |
+
|
206 |
+
with gr.Accordion("IP-Adapter Settings", open=False):
|
207 |
+
gr.Markdown("Enable IP-Adapter to use settings", visible=True)
|
208 |
+
with gr.Row():
|
209 |
+
ip_adapter_scale = gr.Slider(
|
210 |
+
label="IP-Adapter Scale",
|
211 |
+
minimum=0.0, maximum=2.0, step=0.05, value=1.0,
|
212 |
+
visible=False,
|
213 |
+
interactive=True,
|
214 |
+
)
|
215 |
+
|
216 |
+
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil",interactive=True, visible=False)
|
217 |
+
|
218 |
with gr.Accordion("Advanced Settings", open=False):
|
219 |
negative_prompt = gr.Text(
|
220 |
label="Negative prompt",
|
221 |
+
value="deformed, ugly,low res, worst quality, low quality",
|
222 |
max_lines=1,
|
223 |
placeholder="Enter a negative prompt",
|
|
|
224 |
)
|
225 |
|
226 |
+
lora_scale = gr.Slider(
|
227 |
+
label="LoRA Scale",
|
228 |
+
minimum=0.0,
|
229 |
+
maximum=2.0,
|
230 |
+
step=0.1,
|
231 |
+
value=1.0,
|
232 |
+
info="Adjust the influence of the LoRA weights",
|
233 |
+
interactive=True,
|
234 |
)
|
|
|
|
|
|
|
235 |
with gr.Row():
|
236 |
width = gr.Slider(
|
237 |
label="Width",
|
|
|
255 |
minimum=0.0,
|
256 |
maximum=10.0,
|
257 |
step=0.1,
|
258 |
+
value=7.0, # Replace with defaults that work for your model
|
259 |
)
|
260 |
|
261 |
num_inference_steps = gr.Slider(
|
|
|
263 |
minimum=1,
|
264 |
maximum=50,
|
265 |
step=1,
|
266 |
+
value=20, # Replace with defaults that work for your model
|
267 |
)
|
268 |
|
269 |
gr.Examples(examples=examples, inputs=[prompt])
|
270 |
+
|
271 |
gr.on(
|
272 |
triggers=[run_button.click, prompt.submit],
|
273 |
fn=infer,
|
274 |
inputs=[
|
275 |
prompt,
|
276 |
negative_prompt,
|
|
|
|
|
277 |
width,
|
278 |
height,
|
279 |
+
lora_scale,
|
280 |
+
controlnet_enabled,
|
281 |
+
controlNet_strength,
|
282 |
+
controlNet_mode,
|
283 |
+
controlNet_image,
|
284 |
+
ip_adapter_enabled,
|
285 |
+
ip_adapter_scale,
|
286 |
+
ip_adapter_image,
|
287 |
+
model_id,
|
288 |
+
seed,
|
289 |
guidance_scale,
|
290 |
num_inference_steps,
|
291 |
],
|
292 |
outputs=[result, seed],
|
293 |
)
|
294 |
|
295 |
+
controlnet_enabled.change(
|
296 |
+
fn=update_controlnet_visibility,
|
297 |
+
inputs=[controlnet_enabled],
|
298 |
+
outputs=[controlNet_strength, controlNet_mode, controlNet_image],
|
299 |
+
)
|
300 |
+
|
301 |
+
ip_adapter_enabled.change(
|
302 |
+
fn=update_ip_adapter_visibility,
|
303 |
+
inputs=[ip_adapter_enabled],
|
304 |
+
outputs=[ip_adapter_scale, ip_adapter_image],
|
305 |
+
)
|
306 |
+
|
307 |
if __name__ == "__main__":
|
308 |
+
demo.launch(share=True)
|