Spaces:
Runtime error
Runtime error
File size: 1,829 Bytes
8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 8aff07e 8114f82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
from unsloth import FastVisionModel
import torch
from PIL import Image
from transformers import TextStreamer
# Load the pre-trained model and tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
model, tokenizer = FastVisionModel.from_pretrained(
"sabaridsnfuji/FloorPlanVisionAIAdaptor",
load_in_4bit=True,
use_gradient_checkpointing="unsloth"
)
FastVisionModel.for_inference(model)
model.to(device)
# Define the instruction
instruction = """You are an expert in architecture and interior design. Analyze the floor plan image and describe accurately the key features, room count, layout, and any other important details you observe."""
# Function to process image and prompt
def analyze_floorplan(image):
if image is None:
return "Invalid image provided. Please upload a valid image."
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": instruction}
]}
]
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
inputs = tokenizer(
image,
input_text,
add_special_tokens=False,
return_tensors="pt",
).to(device)
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
output = model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=1024,
use_cache=True,
temperature=1.0,
min_p=0.1
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
return result
# Gradio interface
iface = gr.Interface(
fn=analyze_floorplan,
inputs=gr.Image(type="pil"),
outputs="text",
title="FloorPlan Vision AI",
description="Upload a floor plan image to get a detailed architectural and interior analysis."
)
iface.launch() |