Emad15 commited on
Commit
8aff07e
·
1 Parent(s): 0337f88

Setup Gradio app with Unsloth

Browse files
Files changed (2) hide show
  1. app.py +35 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from unsloth import FastVisionModel
3
+ from PIL import Image
4
+ import torch
5
+
6
+ device = "cuda" if torch.cuda.is_available() else "cpu"
7
+
8
+ # Load the Unsloth FastVisionModel
9
+ model, tokenizer = FastVisionModel.from_pretrained(
10
+ model_name = "unsloth/mllama-vision",
11
+ max_seq_length = 2048,
12
+ dtype = torch.float16,
13
+ load_in_4bit = True,
14
+ ).to(device)
15
+
16
+ def analyze_image(image, prompt):
17
+ inputs = tokenizer(
18
+ image,
19
+ prompt,
20
+ return_tensors="pt"
21
+ ).to(device)
22
+
23
+ outputs = model.generate(**inputs, max_new_tokens=100)
24
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
25
+ return result
26
+
27
+ iface = gr.Interface(
28
+ fn=analyze_image,
29
+ inputs=[gr.Image(type="pil"), "text"],
30
+ outputs="text",
31
+ title="FloorPlan Vision AI",
32
+ description="Upload an image and enter your prompt for AI analysis."
33
+ )
34
+
35
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ unsloth
2
+ torch
3
+ transformers
4
+ sentencepiece
5
+ datasets
6
+ Pillow