Spaces:
Runtime error
Runtime error
Setup Gradio app with Unsloth
Browse files- app.py +35 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from unsloth import FastVisionModel
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
# Load the Unsloth FastVisionModel
|
9 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
10 |
+
model_name = "unsloth/mllama-vision",
|
11 |
+
max_seq_length = 2048,
|
12 |
+
dtype = torch.float16,
|
13 |
+
load_in_4bit = True,
|
14 |
+
).to(device)
|
15 |
+
|
16 |
+
def analyze_image(image, prompt):
|
17 |
+
inputs = tokenizer(
|
18 |
+
image,
|
19 |
+
prompt,
|
20 |
+
return_tensors="pt"
|
21 |
+
).to(device)
|
22 |
+
|
23 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
24 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
return result
|
26 |
+
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=analyze_image,
|
29 |
+
inputs=[gr.Image(type="pil"), "text"],
|
30 |
+
outputs="text",
|
31 |
+
title="FloorPlan Vision AI",
|
32 |
+
description="Upload an image and enter your prompt for AI analysis."
|
33 |
+
)
|
34 |
+
|
35 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
unsloth
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
sentencepiece
|
5 |
+
datasets
|
6 |
+
Pillow
|