Egrt's picture
init
424188c
import os
import torch
import matplotlib.pyplot as plt
import cv2
import numpy as np
from scipy.spatial import Delaunay
import os
import shapely
from shapely.geometry import Polygon, MultiPolygon, LineString, MultiLineString
corner_metric_thresh = 10
angle_metric_thresh = 5
# colormap_255 = [[i, i, i] for i in range(40)]
class Evaluator():
def __init__(self, data_rw, options):
self.data_rw = data_rw
self.options = options
self.device = torch.device("cuda")
def polygonize_mask(self, mask, degree, return_mask=True):
h, w = mask.shape[0], mask.shape[1]
mask = mask
room_mask = 255 * (mask == 1)
room_mask = room_mask.astype(np.uint8)
room_mask_inv = 255 - room_mask
ret, thresh = cv2.threshold(room_mask_inv, 250, 255, cv2.THRESH_BINARY_INV)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]
max_area = cv2.contourArea(cnt)
for cont in contours:
if cv2.contourArea(cont) > max_area:
cnt = cont
max_area = cv2.contourArea(cont)
perimeter = cv2.arcLength(cnt, True)
# epsilon = 0.01 * cv2.arcLength(cnt, True)
epsilon = degree * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
# approx = np.concatenate([approx, approx[0][None]], axis=0)
approx = approx.astype(np.int32).reshape((-1, 2))
# approx_tensor = torch.tensor(approx, device=self.device)
# return approx_tensor
if return_mask:
room_filled_map = np.zeros((h, w))
cv2.fillPoly(room_filled_map, [approx], color=1.)
return approx, room_filled_map
else:
return approx
def print_res_str_for_latex(self, quant_result_dict):
str_fields = ""
str_values = ""
avg_value_prec = 0
avg_value_rec = 0
for k_ind, k in enumerate(quant_result_dict.keys()):
str_fields += " & " + k
str_values += " & %.2f " % quant_result_dict[k]
if k_ind % 2 == 0:
avg_value_prec += quant_result_dict[k] / 3
else:
avg_value_rec += quant_result_dict[k] / 3
str_fields += "tm_prec & tm_rec"
str_values += " & %.2f " % avg_value_prec
str_values += " & %.2f " % avg_value_rec
str_fields += " \\\\"
str_values += " \\\\"
print(str_fields)
print(str_values)
def calc_gradient(self, room_map):
grad_x = np.abs(room_map[:, 1:] - room_map[:, :-1])
grad_y = np.abs(room_map[1:] - room_map[:-1])
grad_xy = np.zeros_like(room_map)
grad_xy[1:] = grad_y
grad_xy[:, 1:] = np.maximum(grad_x, grad_xy[:,1:])
plt.figure()
plt.axis("off")
plt.imshow(grad_xy, cmap="gray")
# plt.show()
plt.savefig("grad.png", bbox_inches='tight')
plt.figure()
plt.axis("off")
plt.imshow(room_map, cmap="gray")
# plt.show()
plt.savefig("joint_mask.png", bbox_inches='tight')
assert False
def evaluate_scene(self, room_polys, show=False, name="ours", dataset_type="s3d"):
with torch.no_grad():
joint_room_map = np.zeros((self.options.height, self.options.width))
edge_map = np.zeros_like(joint_room_map)
room_filled_map = np.ones([joint_room_map.shape[0], joint_room_map.shape[1], 3])
density_map = self.data_rw.density_map.cpu().numpy()[0]
img_size = (density_map.shape[0], density_map.shape[0])
for room_ind, poly in enumerate(room_polys):
cv2.polylines(edge_map, [poly], isClosed=True, color=1.)
cv2.fillPoly(joint_room_map, [poly], color=1.)
joint_room_map_vis = np.ones([joint_room_map.shape[0], joint_room_map.shape[1], 3])
# Ground Truth
gt_polys_list = self.data_rw.gt_sample["polygons_list"]
gt_polys_list = [np.concatenate([poly, poly[None, 0]]) for poly in gt_polys_list]
ignore_mask_region = self.data_rw.gt_sample["wall_map"].cpu().numpy()[0, :, :, 0]
img_size = (joint_room_map.shape[0], joint_room_map.shape[1])
quant_result_dict = self.get_quantitative(gt_polys_list, ignore_mask_region, room_polys, img_size, dataset_type=dataset_type)
return quant_result_dict
def get_quantitative(self, gt_polys, ignore_mask_region, pred_polys=None, masks_list=None, img_size=(256, 256), dataset_type="s3d"):
def get_room_metric():
pred_overlaps = [False] * len(pred_room_map_list)
for pred_ind1 in range(len(pred_room_map_list) - 1):
pred_map1 = pred_room_map_list[pred_ind1]
for pred_ind2 in range(pred_ind1 + 1, len(pred_room_map_list)):
pred_map2 = pred_room_map_list[pred_ind2]
if dataset_type == "s3d":
kernel = np.ones((5, 5), np.uint8)
else:
kernel = np.ones((3, 3), np.uint8)
# todo: for our method, the rooms share corners and edges, need to check here
pred_map1_er = cv2.erode(pred_map1, kernel)
pred_map2_er = cv2.erode(pred_map2, kernel)
intersection = (pred_map1_er + pred_map2_er) == 2
# intersection = (pred_map1 + pred_map2) == 2
intersection_area = np.sum(intersection)
if intersection_area >= 1:
pred_overlaps[pred_ind1] = True
pred_overlaps[pred_ind2] = True
# import pdb; pdb.set_trace()
room_metric = [np.bool((1 - pred_overlaps[ind]) * pred2gt_exists[ind]) for ind in range(len(pred_polys))]
return room_metric
def get_corner_metric():
room_corners_metric = []
for pred_poly_ind, gt_poly_ind in enumerate(pred2gt_indices):
p_poly = pred_polys[pred_poly_ind][:-1] # Last vertex = First vertex
p_poly_corner_metrics = [False] * p_poly.shape[0]
if not room_metric[pred_poly_ind]:
room_corners_metric += p_poly_corner_metrics
continue
gt_poly = gt_polys[gt_poly_ind][:-1]
# for v in p_poly:
# v_dists = np.linalg.norm(v[None,:] - gt_poly, axis=1, ord=2)
# v_min_dist = np.min(v_dists)
#
# v_tp = v_min_dist <= 10
# room_corners_metric.append(v_tp)
for v in gt_poly:
v_dists = np.linalg.norm(v[None,:] - p_poly, axis=1, ord=2)
v_min_dist_ind = np.argmin(v_dists)
v_min_dist = v_dists[v_min_dist_ind]
if not p_poly_corner_metrics[v_min_dist_ind]:
v_tp = v_min_dist <= corner_metric_thresh
p_poly_corner_metrics[v_min_dist_ind] = v_tp
room_corners_metric += p_poly_corner_metrics
return room_corners_metric
def get_angle_metric():
def get_line_vector(p1, p2):
p1 = np.concatenate((p1, np.array([1])))
p2 = np.concatenate((p2, np.array([1])))
line_vector = -np.cross(p1, p2)
return line_vector
def get_poly_orientation(my_poly):
angles_sum = 0
for v_ind, _ in enumerate(my_poly):
if v_ind < len(my_poly) - 1:
v_sides = my_poly[[v_ind - 1, v_ind, v_ind, v_ind + 1], :]
else:
v_sides = my_poly[[v_ind - 1, v_ind, v_ind, 0], :]
v1_vector = get_line_vector(v_sides[0], v_sides[1])
v1_vector = v1_vector / (np.linalg.norm(v1_vector, ord=2) + 1e-4)
v2_vector = get_line_vector(v_sides[2], v_sides[3])
v2_vector = v2_vector / (np.linalg.norm(v2_vector, ord=2) + 1e-4)
orientation = (v_sides[1, 1] - v_sides[0, 1]) * (v_sides[3, 0] - v_sides[1, 0]) - (
v_sides[3, 1] - v_sides[1, 1]) * (
v_sides[1, 0] - v_sides[0, 0])
v1_vector_2d = v1_vector[:2] / (v1_vector[2] + 1e-4)
v2_vector_2d = v2_vector[:2] / (v2_vector[2] + 1e-4)
v1_vector_2d = v1_vector_2d / (np.linalg.norm(v1_vector_2d, ord=2) + 1e-4)
v2_vector_2d = v2_vector_2d / (np.linalg.norm(v2_vector_2d, ord=2) + 1e-4)
angle_cos = v1_vector_2d.dot(v2_vector_2d)
angle_cos = np.clip(angle_cos, -1, 1)
# G.T. has clockwise orientation, remove minus in the equation
angle = np.sign(orientation) * np.abs(np.arccos(angle_cos))
angle_degree = angle * 180 / np.pi
angles_sum += angle_degree
return np.sign(angles_sum)
def get_angle_v_sides(inp_v_sides, poly_orient):
v1_vector = get_line_vector(inp_v_sides[0], inp_v_sides[1])
v1_vector = v1_vector / (np.linalg.norm(v1_vector, ord=2) + 1e-4)
v2_vector = get_line_vector(inp_v_sides[2], inp_v_sides[3])
v2_vector = v2_vector / (np.linalg.norm(v2_vector, ord=2) + 1e-4)
orientation = (inp_v_sides[1, 1] - inp_v_sides[0, 1]) * (inp_v_sides[3, 0] - inp_v_sides[1, 0]) - (
inp_v_sides[3, 1] - inp_v_sides[1, 1]) * (
inp_v_sides[1, 0] - inp_v_sides[0, 0])
v1_vector_2d = v1_vector[:2] / (v1_vector[2]+ 1e-4)
v2_vector_2d = v2_vector[:2] / (v2_vector[2]+ 1e-4)
v1_vector_2d = v1_vector_2d / (np.linalg.norm(v1_vector_2d, ord=2) + 1e-4)
v2_vector_2d = v2_vector_2d / (np.linalg.norm(v2_vector_2d, ord=2) + 1e-4)
angle_cos = v1_vector_2d.dot(v2_vector_2d)
angle_cos = np.clip(angle_cos, -1, 1)
angle = poly_orient * np.sign(orientation) * np.arccos(angle_cos)
angle_degree = angle * 180 / np.pi
return angle_degree
room_angles_metric = []
for pred_poly_ind, gt_poly_ind in enumerate(pred2gt_indices):
p_poly = pred_polys[pred_poly_ind][:-1] # Last vertex = First vertex
p_poly_angle_metrics = [False] * p_poly.shape[0]
if not room_metric[pred_poly_ind]:
room_angles_metric += p_poly_angle_metrics
continue
gt_poly = gt_polys[gt_poly_ind][:-1]
# for v in p_poly:
# v_dists = np.linalg.norm(v[None,:] - gt_poly, axis=1, ord=2)
# v_min_dist = np.min(v_dists)
#
# v_tp = v_min_dist <= 10
# room_corners_metric.append(v_tp)
gt_poly_orient = get_poly_orientation(gt_poly)
p_poly_orient = get_poly_orientation(p_poly)
for v_gt_ind, v in enumerate(gt_poly):
v_dists = np.linalg.norm(v[None,:] - p_poly, axis=1, ord=2)
v_ind = np.argmin(v_dists)
v_min_dist = v_dists[v_ind]
if v_min_dist > corner_metric_thresh:
# room_angles_metric.append(False)
continue
if v_ind < len(p_poly) - 1:
v_sides = p_poly[[v_ind - 1, v_ind, v_ind, v_ind + 1], :]
else:
v_sides = p_poly[[v_ind - 1, v_ind, v_ind, 0], :]
v_sides = v_sides.reshape((4,2))
pred_angle_degree = get_angle_v_sides(v_sides, p_poly_orient)
# Note: replacing some variables with values from the g.t. poly
if v_gt_ind < len(gt_poly) - 1:
v_sides = gt_poly[[v_gt_ind - 1, v_gt_ind, v_gt_ind, v_gt_ind + 1], :]
else:
v_sides = gt_poly[[v_gt_ind - 1, v_gt_ind, v_gt_ind, 0], :]
v_sides = v_sides.reshape((4, 2))
gt_angle_degree = get_angle_v_sides(v_sides, gt_poly_orient)
angle_metric = np.abs(pred_angle_degree - gt_angle_degree)
# room_angles_metric.append(angle_metric < 5)
p_poly_angle_metrics[v_ind] = angle_metric <= angle_metric_thresh
# if angle_metric > 5:
# print(v_gt_ind, angle_metric)
# print(pred_angle_degree, gt_angle_degree)
# input("?")
room_angles_metric += p_poly_angle_metrics
for am, cm in zip(room_angles_metric, corner_metric):
assert not (cm == False and am == True), "cm: %d am: %d" %(cm, am)
return room_angles_metric
def poly_map_sort_key(x):
return np.sum(x[1])
h, w = img_size
gt_room_map_list = []
for room_ind, poly in enumerate(gt_polys):
room_map = np.zeros((h, w))
cv2.fillPoly(room_map, [poly], color=1.)
gt_room_map_list.append(room_map)
gt_polys_sorted_indcs = [i[0] for i in sorted(enumerate(gt_room_map_list), key=poly_map_sort_key, reverse=True)]
gt_polys = [gt_polys[ind] for ind in gt_polys_sorted_indcs]
gt_room_map_list = [gt_room_map_list[ind] for ind in gt_polys_sorted_indcs]
if pred_polys is not None:
pred_room_map_list = []
for room_ind, poly in enumerate(pred_polys):
room_map = np.zeros((h, w))
cv2.fillPoly(room_map, [poly], color=1.)
pred_room_map_list.append(room_map)
else:
pred_room_map_list = masks_list
gt2pred_indices = [-1] * len(gt_polys)
gt2pred_exists = [False] * len(gt_polys)
for gt_ind, gt_map in enumerate(gt_room_map_list):
best_iou = 0.
best_ind = -1
for pred_ind, pred_map in enumerate(pred_room_map_list):
intersection = (1 - ignore_mask_region) * ((pred_map + gt_map) == 2)
union = (1 - ignore_mask_region) * ((pred_map + gt_map) >= 1)
iou = np.sum(intersection) / (np.sum(union) + 1)
if iou > best_iou and iou > 0.5:
best_iou = iou
best_ind = pred_ind
# plt.figure()
# plt.subplot(121)
# plt.imshow(pred_map)
# plt.subplot(122)
# plt.imshow(gt_map)
# plt.show()
# if best_ind == -1:
# plt.figure()
# plt.imshow(gt_map)
# plt.show()
gt2pred_indices[gt_ind] = best_ind
gt2pred_exists[gt_ind] = best_ind != -1
# if best_ind == -1:
# plt.figure()
# plt.imshow(gt_map)
# plt.show()
pred2gt_exists = [True if pred_ind in gt2pred_indices else False for pred_ind, _ in enumerate(pred_polys)]
pred2gt_indices = [gt2pred_indices.index(pred_ind) if pred_ind in gt2pred_indices else -1 for pred_ind, _ in enumerate(pred_polys)]
# print(gt2pred_indices)
# print(pred2gt_indices)
# assert False
# import pdb; pdb.set_trace()
room_metric = get_room_metric()
if len(pred_polys) == 0:
room_metric_prec = 0
else:
room_metric_prec = sum(room_metric) / float(len(pred_polys))
room_metric_rec = sum(room_metric) / float(len(gt_polys))
corner_metric = get_corner_metric()
pred_corners_n = sum([poly.shape[0] - 1 for poly in pred_polys])
gt_corners_n = sum([poly.shape[0] - 1 for poly in gt_polys])
if pred_corners_n > 0:
corner_metric_prec = sum(corner_metric) / float(pred_corners_n)
else:
corner_metric_prec = 0
corner_metric_rec = sum(corner_metric) / float(gt_corners_n)
angles_metric = get_angle_metric()
if pred_corners_n > 0:
angles_metric_prec = sum(angles_metric) / float(pred_corners_n)
else:
angles_metric_prec = 0
angles_metric_rec = sum(angles_metric) / float(gt_corners_n)
assert room_metric_prec <= 1
assert room_metric_rec <= 1
assert corner_metric_prec <= 1
assert corner_metric_rec <= 1
assert angles_metric_prec <= 1
assert angles_metric_rec <= 1
result_dict = {
'room_prec': room_metric_prec,
'room_rec': room_metric_rec,
'corner_prec': corner_metric_prec,
'corner_rec': corner_metric_rec,
'angles_prec': angles_metric_prec,
'angles_rec': angles_metric_rec,
}
return result_dict