File size: 17,273 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import torch
import matplotlib.pyplot as plt
import cv2
import numpy as np
from scipy.spatial import Delaunay
import os
import shapely
from shapely.geometry import Polygon, MultiPolygon, LineString, MultiLineString

corner_metric_thresh = 10
angle_metric_thresh = 5



# colormap_255 = [[i, i, i] for i in range(40)]

class Evaluator():
    def __init__(self, data_rw, options):
        self.data_rw = data_rw
        self.options = options

        self.device = torch.device("cuda")

    def polygonize_mask(self, mask, degree, return_mask=True):
        h, w = mask.shape[0], mask.shape[1]
        mask = mask

        room_mask = 255 * (mask == 1)
        room_mask = room_mask.astype(np.uint8)
        room_mask_inv = 255 - room_mask

        ret, thresh = cv2.threshold(room_mask_inv, 250, 255, cv2.THRESH_BINARY_INV)

        contours, hierarchy = cv2.findContours(thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)

        cnt = contours[0]
        max_area = cv2.contourArea(cnt)

        for cont in contours:
            if cv2.contourArea(cont) > max_area:
                cnt = cont
                max_area = cv2.contourArea(cont)

        perimeter = cv2.arcLength(cnt, True)
        # epsilon = 0.01 * cv2.arcLength(cnt, True)
        epsilon = degree * cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, epsilon, True)

        # approx = np.concatenate([approx, approx[0][None]], axis=0)
        approx = approx.astype(np.int32).reshape((-1, 2))

        # approx_tensor = torch.tensor(approx, device=self.device)

        # return approx_tensor
        if return_mask:
            room_filled_map = np.zeros((h, w))
            cv2.fillPoly(room_filled_map, [approx], color=1.)

            return approx, room_filled_map
        else:
            return approx

    def print_res_str_for_latex(self, quant_result_dict):

        str_fields = ""
        str_values = ""

        avg_value_prec = 0
        avg_value_rec = 0
        for k_ind, k in enumerate(quant_result_dict.keys()):
            str_fields += " & " + k
            str_values += " & %.2f " % quant_result_dict[k]

            if k_ind % 2 == 0:
                avg_value_prec += quant_result_dict[k] / 3
            else:
                avg_value_rec += quant_result_dict[k] / 3

            str_fields += "tm_prec & tm_rec"

        str_values += " & %.2f " % avg_value_prec
        str_values += " & %.2f " % avg_value_rec

        str_fields += " \\\\"
        str_values += " \\\\"

        print(str_fields)
        print(str_values)

    def calc_gradient(self, room_map):
        grad_x = np.abs(room_map[:, 1:] - room_map[:, :-1])
        grad_y = np.abs(room_map[1:] - room_map[:-1])

        grad_xy = np.zeros_like(room_map)
        grad_xy[1:] = grad_y
        grad_xy[:, 1:] = np.maximum(grad_x, grad_xy[:,1:])

        plt.figure()
        plt.axis("off")
        plt.imshow(grad_xy, cmap="gray")
        # plt.show()
        plt.savefig("grad.png", bbox_inches='tight')

        plt.figure()
        plt.axis("off")
        plt.imshow(room_map, cmap="gray")
        # plt.show()
        plt.savefig("joint_mask.png", bbox_inches='tight')
        assert False

    def evaluate_scene(self, room_polys, show=False, name="ours", dataset_type="s3d"):

        with torch.no_grad():
            joint_room_map = np.zeros((self.options.height, self.options.width))

            edge_map = np.zeros_like(joint_room_map)
            room_filled_map = np.ones([joint_room_map.shape[0], joint_room_map.shape[1], 3])

        density_map = self.data_rw.density_map.cpu().numpy()[0]
        img_size = (density_map.shape[0], density_map.shape[0])

        for room_ind, poly in enumerate(room_polys):
            cv2.polylines(edge_map, [poly], isClosed=True, color=1.)
            cv2.fillPoly(joint_room_map, [poly], color=1.)

        joint_room_map_vis = np.ones([joint_room_map.shape[0], joint_room_map.shape[1], 3])

        # Ground Truth

        gt_polys_list = self.data_rw.gt_sample["polygons_list"]
        gt_polys_list = [np.concatenate([poly, poly[None, 0]]) for poly in gt_polys_list]

        ignore_mask_region = self.data_rw.gt_sample["wall_map"].cpu().numpy()[0, :, :, 0]

        img_size = (joint_room_map.shape[0], joint_room_map.shape[1])
        quant_result_dict = self.get_quantitative(gt_polys_list, ignore_mask_region, room_polys, img_size, dataset_type=dataset_type)

        return quant_result_dict

    def get_quantitative(self, gt_polys, ignore_mask_region, pred_polys=None, masks_list=None, img_size=(256, 256), dataset_type="s3d"):
        def get_room_metric():
            pred_overlaps = [False] * len(pred_room_map_list)

            for pred_ind1 in range(len(pred_room_map_list) - 1):
                pred_map1 = pred_room_map_list[pred_ind1]

                for pred_ind2 in range(pred_ind1 + 1, len(pred_room_map_list)):
                    pred_map2 = pred_room_map_list[pred_ind2]

                    if dataset_type == "s3d":
                        kernel = np.ones((5, 5), np.uint8)
                    else:
                        kernel = np.ones((3, 3), np.uint8)

                    # todo: for our method, the rooms share corners and edges, need to check here
                    pred_map1_er = cv2.erode(pred_map1, kernel)
                    pred_map2_er = cv2.erode(pred_map2, kernel)

                    intersection = (pred_map1_er + pred_map2_er) == 2
                    # intersection = (pred_map1 + pred_map2) == 2

                    intersection_area = np.sum(intersection)

                    if intersection_area >= 1:
                        pred_overlaps[pred_ind1] = True
                        pred_overlaps[pred_ind2] = True

            # import pdb; pdb.set_trace()
            room_metric = [np.bool((1 - pred_overlaps[ind]) * pred2gt_exists[ind]) for ind in range(len(pred_polys))]

            return room_metric

        def get_corner_metric():

            room_corners_metric = []
            for pred_poly_ind, gt_poly_ind in enumerate(pred2gt_indices):
                p_poly = pred_polys[pred_poly_ind][:-1] # Last vertex = First vertex

                p_poly_corner_metrics = [False] * p_poly.shape[0]
                if not room_metric[pred_poly_ind]:
                    room_corners_metric += p_poly_corner_metrics
                    continue

                gt_poly = gt_polys[gt_poly_ind][:-1]

                # for v in p_poly:
                #     v_dists = np.linalg.norm(v[None,:] - gt_poly, axis=1, ord=2)
                #     v_min_dist = np.min(v_dists)
                #
                #     v_tp = v_min_dist <= 10
                #     room_corners_metric.append(v_tp)

                for v in gt_poly:
                    v_dists = np.linalg.norm(v[None,:] - p_poly, axis=1, ord=2)
                    v_min_dist_ind = np.argmin(v_dists)
                    v_min_dist = v_dists[v_min_dist_ind]

                    if not p_poly_corner_metrics[v_min_dist_ind]:
                        v_tp = v_min_dist <= corner_metric_thresh
                        p_poly_corner_metrics[v_min_dist_ind] = v_tp

                room_corners_metric += p_poly_corner_metrics

            return room_corners_metric

        def get_angle_metric():

            def get_line_vector(p1, p2):
                p1 = np.concatenate((p1, np.array([1])))
                p2 = np.concatenate((p2, np.array([1])))

                line_vector = -np.cross(p1, p2)

                return line_vector

            def get_poly_orientation(my_poly):
                angles_sum = 0
                for v_ind, _ in enumerate(my_poly):
                    if v_ind < len(my_poly) - 1:
                        v_sides = my_poly[[v_ind - 1, v_ind, v_ind, v_ind + 1], :]
                    else:
                        v_sides = my_poly[[v_ind - 1, v_ind, v_ind, 0], :]

                    v1_vector = get_line_vector(v_sides[0], v_sides[1])
                    v1_vector = v1_vector / (np.linalg.norm(v1_vector, ord=2) + 1e-4)
                    v2_vector = get_line_vector(v_sides[2], v_sides[3])
                    v2_vector = v2_vector / (np.linalg.norm(v2_vector, ord=2) + 1e-4)

                    orientation = (v_sides[1, 1] - v_sides[0, 1]) * (v_sides[3, 0] - v_sides[1, 0]) - (
                            v_sides[3, 1] - v_sides[1, 1]) * (
                                          v_sides[1, 0] - v_sides[0, 0])

                    v1_vector_2d = v1_vector[:2] / (v1_vector[2] + 1e-4)
                    v2_vector_2d = v2_vector[:2] / (v2_vector[2] + 1e-4)

                    v1_vector_2d = v1_vector_2d / (np.linalg.norm(v1_vector_2d, ord=2) + 1e-4)
                    v2_vector_2d = v2_vector_2d / (np.linalg.norm(v2_vector_2d, ord=2) + 1e-4)

                    angle_cos = v1_vector_2d.dot(v2_vector_2d)
                    angle_cos = np.clip(angle_cos, -1, 1)

                    # G.T. has clockwise orientation, remove minus in the equation

                    angle = np.sign(orientation) * np.abs(np.arccos(angle_cos))
                    angle_degree = angle * 180 / np.pi

                    angles_sum += angle_degree

                return np.sign(angles_sum)

            def get_angle_v_sides(inp_v_sides, poly_orient):
                v1_vector = get_line_vector(inp_v_sides[0], inp_v_sides[1])
                v1_vector = v1_vector / (np.linalg.norm(v1_vector, ord=2) + 1e-4)
                v2_vector = get_line_vector(inp_v_sides[2], inp_v_sides[3])
                v2_vector = v2_vector / (np.linalg.norm(v2_vector, ord=2) + 1e-4)

                orientation = (inp_v_sides[1, 1] - inp_v_sides[0, 1]) * (inp_v_sides[3, 0] - inp_v_sides[1, 0]) - (
                        inp_v_sides[3, 1] - inp_v_sides[1, 1]) * (
                                      inp_v_sides[1, 0] - inp_v_sides[0, 0])

                v1_vector_2d = v1_vector[:2] / (v1_vector[2]+ 1e-4)
                v2_vector_2d = v2_vector[:2] / (v2_vector[2]+ 1e-4)

                v1_vector_2d = v1_vector_2d / (np.linalg.norm(v1_vector_2d, ord=2) + 1e-4)
                v2_vector_2d = v2_vector_2d / (np.linalg.norm(v2_vector_2d, ord=2) + 1e-4)

                angle_cos = v1_vector_2d.dot(v2_vector_2d)
                angle_cos = np.clip(angle_cos, -1, 1)

                angle = poly_orient * np.sign(orientation) * np.arccos(angle_cos)
                angle_degree = angle * 180 / np.pi

                return angle_degree

            room_angles_metric = []
            for pred_poly_ind, gt_poly_ind in enumerate(pred2gt_indices):
                p_poly = pred_polys[pred_poly_ind][:-1] # Last vertex = First vertex

                p_poly_angle_metrics = [False] * p_poly.shape[0]
                if not room_metric[pred_poly_ind]:
                    room_angles_metric += p_poly_angle_metrics
                    continue

                gt_poly = gt_polys[gt_poly_ind][:-1]

                # for v in p_poly:
                #     v_dists = np.linalg.norm(v[None,:] - gt_poly, axis=1, ord=2)
                #     v_min_dist = np.min(v_dists)
                #
                #     v_tp = v_min_dist <= 10
                #     room_corners_metric.append(v_tp)

                gt_poly_orient = get_poly_orientation(gt_poly)
                p_poly_orient = get_poly_orientation(p_poly)

                for v_gt_ind, v in enumerate(gt_poly):
                    v_dists = np.linalg.norm(v[None,:] - p_poly, axis=1, ord=2)
                    v_ind = np.argmin(v_dists)
                    v_min_dist = v_dists[v_ind]

                    if v_min_dist > corner_metric_thresh:
                        # room_angles_metric.append(False)
                        continue

                    if v_ind < len(p_poly) - 1:
                        v_sides = p_poly[[v_ind - 1, v_ind, v_ind, v_ind + 1], :]
                    else:
                        v_sides = p_poly[[v_ind - 1, v_ind, v_ind, 0], :]

                    v_sides = v_sides.reshape((4,2))
                    pred_angle_degree = get_angle_v_sides(v_sides, p_poly_orient)

                    # Note: replacing some variables with values from the g.t. poly

                    if v_gt_ind < len(gt_poly) - 1:
                        v_sides = gt_poly[[v_gt_ind - 1, v_gt_ind, v_gt_ind, v_gt_ind + 1], :]
                    else:
                        v_sides = gt_poly[[v_gt_ind - 1, v_gt_ind, v_gt_ind, 0], :]

                    v_sides = v_sides.reshape((4, 2))
                    gt_angle_degree = get_angle_v_sides(v_sides, gt_poly_orient)

                    angle_metric = np.abs(pred_angle_degree - gt_angle_degree)

                    # room_angles_metric.append(angle_metric < 5)
                    p_poly_angle_metrics[v_ind] = angle_metric <= angle_metric_thresh

                    # if angle_metric > 5:
                    #     print(v_gt_ind, angle_metric)
                    #     print(pred_angle_degree, gt_angle_degree)
                    #     input("?")


                room_angles_metric += p_poly_angle_metrics

            for am, cm in zip(room_angles_metric, corner_metric):
                assert not (cm == False and am == True), "cm: %d am: %d" %(cm, am)

            return room_angles_metric

        def poly_map_sort_key(x):
            return np.sum(x[1])

        h, w = img_size

        gt_room_map_list = []
        for room_ind, poly in enumerate(gt_polys):
            room_map = np.zeros((h, w))
            cv2.fillPoly(room_map, [poly], color=1.)

            gt_room_map_list.append(room_map)

        gt_polys_sorted_indcs = [i[0] for i in sorted(enumerate(gt_room_map_list), key=poly_map_sort_key, reverse=True)]

        gt_polys = [gt_polys[ind] for ind in gt_polys_sorted_indcs]
        gt_room_map_list = [gt_room_map_list[ind] for ind in gt_polys_sorted_indcs]

        if pred_polys is not None:
            pred_room_map_list = []
            for room_ind, poly in enumerate(pred_polys):
                room_map = np.zeros((h, w))
                cv2.fillPoly(room_map, [poly], color=1.)

                pred_room_map_list.append(room_map)
        else:
            pred_room_map_list = masks_list

        gt2pred_indices = [-1] * len(gt_polys)
        gt2pred_exists = [False] * len(gt_polys)

        for gt_ind, gt_map in enumerate(gt_room_map_list):

            best_iou = 0.
            best_ind = -1
            for pred_ind, pred_map in enumerate(pred_room_map_list):

                intersection = (1 - ignore_mask_region) * ((pred_map + gt_map) == 2)
                union = (1 - ignore_mask_region) * ((pred_map + gt_map) >= 1)

                iou = np.sum(intersection) / (np.sum(union) + 1)

                if iou > best_iou and iou > 0.5:
                    best_iou = iou
                    best_ind = pred_ind

            #         plt.figure()
            #         plt.subplot(121)
            #         plt.imshow(pred_map)
            #         plt.subplot(122)
            #         plt.imshow(gt_map)
            #         plt.show()
            # if best_ind == -1:
            #     plt.figure()
            #     plt.imshow(gt_map)
            #     plt.show()

            gt2pred_indices[gt_ind] = best_ind
            gt2pred_exists[gt_ind] = best_ind != -1

            # if best_ind == -1:
            #     plt.figure()
            #     plt.imshow(gt_map)
            #     plt.show()

        pred2gt_exists = [True if pred_ind in gt2pred_indices else False for pred_ind, _ in enumerate(pred_polys)]
        pred2gt_indices = [gt2pred_indices.index(pred_ind) if pred_ind in gt2pred_indices else -1 for pred_ind, _ in enumerate(pred_polys)]

        # print(gt2pred_indices)
        # print(pred2gt_indices)
        # assert False

        # import pdb; pdb.set_trace()
        room_metric = get_room_metric()
        if len(pred_polys) == 0:
            room_metric_prec = 0
        else:
            room_metric_prec = sum(room_metric) / float(len(pred_polys))
        room_metric_rec = sum(room_metric) / float(len(gt_polys))


        corner_metric = get_corner_metric()
        pred_corners_n = sum([poly.shape[0] - 1 for poly in pred_polys])
        gt_corners_n = sum([poly.shape[0] - 1 for poly in gt_polys])

        if pred_corners_n > 0:
            corner_metric_prec = sum(corner_metric) / float(pred_corners_n)
        else:
            corner_metric_prec = 0
        corner_metric_rec = sum(corner_metric) / float(gt_corners_n)


        angles_metric = get_angle_metric()

        if pred_corners_n > 0:
            angles_metric_prec = sum(angles_metric) / float(pred_corners_n)
        else:
            angles_metric_prec = 0
        angles_metric_rec = sum(angles_metric) / float(gt_corners_n)

        assert room_metric_prec <= 1
        assert room_metric_rec <= 1
        assert corner_metric_prec <= 1
        assert corner_metric_rec <= 1
        assert angles_metric_prec <= 1
        assert angles_metric_rec <= 1

        result_dict = {
            'room_prec': room_metric_prec,
            'room_rec': room_metric_rec,
            'corner_prec': corner_metric_prec,
            'corner_rec': corner_metric_rec,
            'angles_prec': angles_metric_prec,
            'angles_rec': angles_metric_rec,
        }

        return result_dict