EdgarDataScientist's picture
Update app.py
db7582c verified
raw
history blame
6.16 kB
import gradio as gr
import os
import tempfile
import requests
import subprocess
import random
import matplotlib.pyplot as plt
import torchaudio
import torch
# --- Load SpeechBrain ---
try:
from speechbrain.inference import EncoderClassifier
speechbrain_classifier = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="pretrained_models/lang-id-commonlanguage_ecapa"
)
SPEECHBRAIN_LOADED = True
except Exception as e:
print(f"Error loading SpeechBrain model: {e}. Simulated mode ON.")
SPEECHBRAIN_LOADED = False
# --- Accent Analyzer Class ---
class AccentAnalyzer:
def __init__(self):
self.accent_profiles = {
"American": {"features": ["rhotic", "flapped_t", "cot_caught_merger"]},
"British": {"features": ["non_rhotic", "t_glottalization", "trap_bath_split"]},
"Australian": {"features": ["non_rhotic", "flat_a", "high_rising_terminal"]},
"Canadian": {"features": ["rhotic", "canadian_raising", "eh_tag"]},
"Indian": {"features": ["retroflex_consonants", "monophthongization", "syllable_timing"]},
"Irish": {"features": ["dental_fricatives", "alveolar_l", "soft_consonants"]},
"Scottish": {"features": ["rolled_r", "monophthongs", "glottal_stops"]},
"South African": {"features": ["non_rhotic", "kit_split", "kw_hw_distinction"]}
}
self.accent_data = self._simulate_profiles()
def _simulate_profiles(self):
all_features = set(f for p in self.accent_profiles.values() for f in p["features"])
data = {}
for name, profile in self.accent_profiles.items():
data[name] = {
"primary_features": profile["features"],
"feature_probabilities": {
f: random.uniform(0.7, 0.9) if f in profile["features"] else random.uniform(0.1, 0.4)
for f in all_features
}
}
return data
def _simulate_accent_classification(self, audio_path):
all_features = {f for p in self.accent_profiles.values() for f in p["features"]}
detected = {f: random.uniform(0.1, 0.9) for f in all_features}
scores = {}
for accent, data in self.accent_data.items():
score = sum(
detected[f] * data["feature_probabilities"][f] * (3.0 if f in data["primary_features"] else 1.0)
for f in all_features
)
scores[accent] = score
top = max(scores, key=scores.get)
conf = (scores[top] / max(scores.values())) * 100
return {
"accent_type": top,
"confidence": conf,
"explanation": f"Detected **{top}** accent with {conf:.1f}% confidence.",
"all_scores": scores
}
def analyze_accent(self, audio_path):
if not SPEECHBRAIN_LOADED:
return self._simulate_accent_classification(audio_path)
try:
signal, sr = torchaudio.load(audio_path)
if sr != 16000:
signal = torchaudio.transforms.Resample(sr, 16000)(signal)
if signal.shape[0] > 1:
signal = signal.mean(dim=0, keepdim=True)
pred = speechbrain_classifier.classify_batch(signal.unsqueeze(0))
probs = pred[0].squeeze(0).tolist()
labels = pred[1][0]
scores = {speechbrain_classifier.hparams.label_encoder.ind2lab[i]: p * 100 for i, p in enumerate(probs)}
if labels[0] == 'en':
result = self._simulate_accent_classification(audio_path)
result["all_scores"] = scores
return result
return {
"accent_type": labels[0],
"confidence": max(probs) * 100,
"explanation": f"Detected language: **{labels[0]}** ({max(probs)*100:.1f}%)",
"all_scores": scores
}
except Exception as e:
print(f"Fallback to simulation: {e}")
return self._simulate_accent_classification(audio_path)
# --- Download & Extract Audio ---
def download_and_extract_audio(url):
temp_dir = tempfile.mkdtemp()
video_path = os.path.join(temp_dir, "video.mp4")
audio_path = os.path.join(temp_dir, "audio.wav")
if "youtube.com" in url or "youtu.be" in url:
from pytubefix import YouTube
yt = YouTube(url)
stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
stream.download(output_path=temp_dir, filename="video.mp4")
else:
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(video_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
# Extract audio using ffmpeg
subprocess.run([
"ffmpeg", "-i", video_path, "-ar", "16000", "-ac", "1", "-f", "wav", audio_path, "-y"
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return audio_path
# --- Gradio Function ---
def analyze_from_url_gradio(url):
if not url:
return "Please enter a URL.", plt.figure()
try:
audio_path = download_and_extract_audio(url)
analyzer = AccentAnalyzer()
results = analyzer.analyze_accent(audio_path)
labels, values = zip(*results["all_scores"].items())
fig, ax = plt.subplots()
ax.bar(labels, values)
ax.set_ylabel('Confidence (%)')
ax.set_title('Accent/Language Confidence')
plt.xticks(rotation=45)
plt.tight_layout()
return results["explanation"], fig
except Exception as e:
return f"Error: {e}", plt.figure()
# --- Gradio Interface ---
iface = gr.Interface(
fn=analyze_from_url_gradio,
inputs=gr.Textbox(label="Enter Public Video URL (YouTube or MP4)"),
outputs=[gr.Textbox(label="Result"), gr.Plot(label="Confidence Plot")],
title="English Accent or Language Analyzer",
description="Paste a public video URL. The system will detect the accent or language spoken using SpeechBrain or simulation."
)
iface.launch()