File size: 6,162 Bytes
6fb1c7d
 
 
 
db7582c
6fb1c7d
db7582c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb1c7d
 
 
db7582c
 
 
 
 
 
 
 
6fb1c7d
db7582c
6fb1c7d
db7582c
 
 
 
 
6fb1c7d
db7582c
 
 
 
6fb1c7d
db7582c
6fb1c7d
db7582c
 
 
 
6fb1c7d
db7582c
 
 
 
 
 
 
6fb1c7d
db7582c
 
 
 
6fb1c7d
 
db7582c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb1c7d
db7582c
6fb1c7d
 
 
 
 
db7582c
 
 
 
 
 
 
 
 
 
6fb1c7d
 
db7582c
 
 
 
6fb1c7d
db7582c
6fb1c7d
db7582c
 
 
 
6fb1c7d
 
 
 
 
db7582c
 
 
 
 
 
 
 
 
6fb1c7d
db7582c
6fb1c7d
db7582c
6fb1c7d
db7582c
 
 
 
 
6fb1c7d
 
db7582c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import os
import tempfile
import requests
import subprocess
import random
import matplotlib.pyplot as plt
import torchaudio
import torch

# --- Load SpeechBrain ---
try:
    from speechbrain.inference import EncoderClassifier
    speechbrain_classifier = EncoderClassifier.from_hparams(
        source="speechbrain/lang-id-commonlanguage_ecapa",
        savedir="pretrained_models/lang-id-commonlanguage_ecapa"
    )
    SPEECHBRAIN_LOADED = True
except Exception as e:
    print(f"Error loading SpeechBrain model: {e}. Simulated mode ON.")
    SPEECHBRAIN_LOADED = False

# --- Accent Analyzer Class ---
class AccentAnalyzer:
    def __init__(self):
        self.accent_profiles = {
            "American": {"features": ["rhotic", "flapped_t", "cot_caught_merger"]},
            "British": {"features": ["non_rhotic", "t_glottalization", "trap_bath_split"]},
            "Australian": {"features": ["non_rhotic", "flat_a", "high_rising_terminal"]},
            "Canadian": {"features": ["rhotic", "canadian_raising", "eh_tag"]},
            "Indian": {"features": ["retroflex_consonants", "monophthongization", "syllable_timing"]},
            "Irish": {"features": ["dental_fricatives", "alveolar_l", "soft_consonants"]},
            "Scottish": {"features": ["rolled_r", "monophthongs", "glottal_stops"]},
            "South African": {"features": ["non_rhotic", "kit_split", "kw_hw_distinction"]}
        }
        self.accent_data = self._simulate_profiles()

    def _simulate_profiles(self):
        all_features = set(f for p in self.accent_profiles.values() for f in p["features"])
        data = {}
        for name, profile in self.accent_profiles.items():
            data[name] = {
                "primary_features": profile["features"],
                "feature_probabilities": {
                    f: random.uniform(0.7, 0.9) if f in profile["features"] else random.uniform(0.1, 0.4)
                    for f in all_features
                }
            }
        return data

    def _simulate_accent_classification(self, audio_path):
        all_features = {f for p in self.accent_profiles.values() for f in p["features"]}
        detected = {f: random.uniform(0.1, 0.9) for f in all_features}
        scores = {}
        for accent, data in self.accent_data.items():
            score = sum(
                detected[f] * data["feature_probabilities"][f] * (3.0 if f in data["primary_features"] else 1.0)
                for f in all_features
            )
            scores[accent] = score
        top = max(scores, key=scores.get)
        conf = (scores[top] / max(scores.values())) * 100
        return {
            "accent_type": top,
            "confidence": conf,
            "explanation": f"Detected **{top}** accent with {conf:.1f}% confidence.",
            "all_scores": scores
        }

    def analyze_accent(self, audio_path):
        if not SPEECHBRAIN_LOADED:
            return self._simulate_accent_classification(audio_path)
        try:
            signal, sr = torchaudio.load(audio_path)
            if sr != 16000:
                signal = torchaudio.transforms.Resample(sr, 16000)(signal)
            if signal.shape[0] > 1:
                signal = signal.mean(dim=0, keepdim=True)
            pred = speechbrain_classifier.classify_batch(signal.unsqueeze(0))
            probs = pred[0].squeeze(0).tolist()
            labels = pred[1][0]
            scores = {speechbrain_classifier.hparams.label_encoder.ind2lab[i]: p * 100 for i, p in enumerate(probs)}
            if labels[0] == 'en':
                result = self._simulate_accent_classification(audio_path)
                result["all_scores"] = scores
                return result
            return {
                "accent_type": labels[0],
                "confidence": max(probs) * 100,
                "explanation": f"Detected language: **{labels[0]}** ({max(probs)*100:.1f}%)",
                "all_scores": scores
            }
        except Exception as e:
            print(f"Fallback to simulation: {e}")
            return self._simulate_accent_classification(audio_path)

# --- Download & Extract Audio ---
def download_and_extract_audio(url):
    temp_dir = tempfile.mkdtemp()
    video_path = os.path.join(temp_dir, "video.mp4")
    audio_path = os.path.join(temp_dir, "audio.wav")

    if "youtube.com" in url or "youtu.be" in url:
        from pytubefix import YouTube
        yt = YouTube(url)
        stream = yt.streams.filter(progressive=True, file_extension='mp4').first()
        stream.download(output_path=temp_dir, filename="video.mp4")
    else:
        with requests.get(url, stream=True) as r:
            r.raise_for_status()
            with open(video_path, 'wb') as f:
                for chunk in r.iter_content(chunk_size=8192):
                    f.write(chunk)

    # Extract audio using ffmpeg
    subprocess.run([
        "ffmpeg", "-i", video_path, "-ar", "16000", "-ac", "1", "-f", "wav", audio_path, "-y"
    ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

    return audio_path

# --- Gradio Function ---
def analyze_from_url_gradio(url):
    if not url:
        return "Please enter a URL.", plt.figure()
    try:
        audio_path = download_and_extract_audio(url)
        analyzer = AccentAnalyzer()
        results = analyzer.analyze_accent(audio_path)

        labels, values = zip(*results["all_scores"].items())
        fig, ax = plt.subplots()
        ax.bar(labels, values)
        ax.set_ylabel('Confidence (%)')
        ax.set_title('Accent/Language Confidence')
        plt.xticks(rotation=45)
        plt.tight_layout()

        return results["explanation"], fig
    except Exception as e:
        return f"Error: {e}", plt.figure()

# --- Gradio Interface ---
iface = gr.Interface(
    fn=analyze_from_url_gradio,
    inputs=gr.Textbox(label="Enter Public Video URL (YouTube or MP4)"),
    outputs=[gr.Textbox(label="Result"), gr.Plot(label="Confidence Plot")],
    title="English Accent or Language Analyzer",
    description="Paste a public video URL. The system will detect the accent or language spoken using SpeechBrain or simulation."
)

iface.launch()