Spaces:
Running
Running
Commit
·
418cf06
1
Parent(s):
3d77e30
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,21 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
import urllib.request
|
6 |
from utils import * # Assuming the gen_labels() and preprocess() functions are in this module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load labels
|
9 |
labels = gen_labels()
|
@@ -31,15 +46,10 @@ if 'image' in locals(): # Check if image variable exists
|
|
31 |
|
32 |
if st.button('Predict'):
|
33 |
try:
|
34 |
-
|
35 |
-
|
36 |
-
prediction = model.predict(img_array[np.newaxis, ...])
|
37 |
-
|
38 |
-
# Get the predicted class name
|
39 |
-
predicted_class_index = np.argmax(prediction[0], axis=-1)
|
40 |
-
predicted_class_name = labels[predicted_class_index]
|
41 |
|
42 |
-
st.info('The uploaded image has been classified as "{}" waste.'.format(
|
43 |
|
44 |
except Exception as e:
|
45 |
st.error(f"An error occurred: {e}")
|
|
|
4 |
from PIL import Image
|
5 |
import urllib.request
|
6 |
from utils import * # Assuming the gen_labels() and preprocess() functions are in this module
|
7 |
+
from your_model_module import model_arc # Import your model function
|
8 |
+
|
9 |
+
# Function to classify the garbage
|
10 |
+
def classify_garbage(img_path, model):
|
11 |
+
processed_img = preprocess_image(img_path)
|
12 |
+
prediction = model.predict(processed_img)
|
13 |
+
|
14 |
+
class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
|
15 |
+
predicted_class = np.argmax(prediction, axis=1)[0]
|
16 |
+
classification_result = class_labels[predicted_class]
|
17 |
+
|
18 |
+
# Get the confidence (probability) of the predicted class
|
19 |
+
confidence = prediction[0][predicted_class] * 100 # Convert probability to percentage
|
20 |
+
|
21 |
+
return classification_result, confidence
|
22 |
|
23 |
# Load labels
|
24 |
labels = gen_labels()
|
|
|
46 |
|
47 |
if st.button('Predict'):
|
48 |
try:
|
49 |
+
model = model_arc() # Initialize your model
|
50 |
+
predicted_class, confidence = classify_garbage(image, model)
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
st.info('The uploaded image has been classified as "{}" waste with {:.2f}% confidence.'.format(predicted_class, confidence))
|
53 |
|
54 |
except Exception as e:
|
55 |
st.error(f"An error occurred: {e}")
|