VishnuEcoClim commited on
Commit
3d77e30
·
1 Parent(s): ef7979f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -37
app.py CHANGED
@@ -3,28 +3,16 @@ import streamlit as st
3
  import numpy as np
4
  from PIL import Image
5
  import urllib.request
6
- from utils import *
7
 
 
8
  labels = gen_labels()
9
 
10
- html_temp = '''
11
- <div style="padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px">
12
- <center><h1>Garbage Segregation</h1></center>
13
- </div>
14
- '''
15
- st.markdown(html_temp, unsafe_allow_html=True)
16
 
17
- html_temp = '''
18
- <div>
19
- <h2></h2>
20
- <center><h3>Please upload Waste Image to find its Category</h3></center>
21
- </div>
22
- '''
23
- st.markdown(html_temp, unsafe_allow_html=True)
24
-
25
- opt = st.selectbox("How do you want to upload the image for classification?\n", ('Please Select', 'Upload image via link', 'Upload image from device'))
26
-
27
- image = None # Initialize image variable
28
 
29
  if opt == 'Upload image from device':
30
  file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
@@ -32,26 +20,26 @@ if opt == 'Upload image from device':
32
  image = Image.open(file).resize((256, 256), Image.LANCZOS)
33
 
34
  elif opt == 'Upload image via link':
 
35
  try:
36
- img = st.text_input('Enter the Image Address')
37
- image = Image.open(urllib.request.urlopen(img)).resize((256, 256), Image.LANCZOS)
38
  except ValueError:
39
- if st.button('Submit'):
40
- show = st.error("Please Enter a valid Image Address!")
41
- time.sleep(4)
42
- show.empty()
43
 
44
- try:
45
- if image is not None:
46
- st.image(image, width = 300, caption = 'Uploaded Image')
47
- if st.button('Predict'):
48
- img = preprocess(image)
49
 
50
- model = model_arc()
51
- #model.load_weights("classify_model.h5")
52
-
53
- prediction = model.predict(img[np.newaxis, ...])
54
- st.info('Hey! The uploaded image has been classified as " {} waste " '.format(labels[np.argmax(prediction[0], axis=-1)]))
55
- except Exception as e:
56
- st.info(e)
57
- pass
 
 
 
 
 
 
 
3
  import numpy as np
4
  from PIL import Image
5
  import urllib.request
6
+ from utils import * # Assuming the gen_labels() and preprocess() functions are in this module
7
 
8
+ # Load labels
9
  labels = gen_labels()
10
 
11
+ # Streamlit app layout
12
+ st.markdown('<center><h1>Garbage Segregation</h1></center>', unsafe_allow_html=True)
13
+ st.markdown('<center><h3>Please upload Waste Image to find its Category</h3></center>', unsafe_allow_html=True)
 
 
 
14
 
15
+ opt = st.selectbox("How do you want to upload the image for classification?", ('Please Select', 'Upload image via link', 'Upload image from device'))
 
 
 
 
 
 
 
 
 
 
16
 
17
  if opt == 'Upload image from device':
18
  file = st.file_uploader('Select', type=['jpg', 'png', 'jpeg'])
 
20
  image = Image.open(file).resize((256, 256), Image.LANCZOS)
21
 
22
  elif opt == 'Upload image via link':
23
+ img_url = st.text_input('Enter the Image Address')
24
  try:
25
+ image = Image.open(urllib.request.urlopen(img_url)).resize((256, 256), Image.LANCZOS)
 
26
  except ValueError:
27
+ st.error("Please Enter a valid Image Address!")
 
 
 
28
 
29
+ if 'image' in locals(): # Check if image variable exists
30
+ st.image(image, width=300, caption='Uploaded Image')
 
 
 
31
 
32
+ if st.button('Predict'):
33
+ try:
34
+ img_array = preprocess(image)
35
+ model = model_arc() # Assuming this function initializes and returns your model
36
+ prediction = model.predict(img_array[np.newaxis, ...])
37
+
38
+ # Get the predicted class name
39
+ predicted_class_index = np.argmax(prediction[0], axis=-1)
40
+ predicted_class_name = labels[predicted_class_index]
41
+
42
+ st.info('The uploaded image has been classified as "{}" waste.'.format(predicted_class_name))
43
+
44
+ except Exception as e:
45
+ st.error(f"An error occurred: {e}")