Spaces:
Running
Running
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D | |
from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy | |
from tensorflow.keras.optimizers import Adam | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
import numpy as np | |
from PIL import Image | |
def gen_labels(): | |
train = 'Dataset/Train' | |
train_generator = ImageDataGenerator(rescale=1/255) | |
train_generator = train_generator.flow_from_directory(train, | |
target_size=(256, 256), | |
batch_size=32, | |
class_mode='sparse') | |
labels = train_generator.class_indices | |
labels = dict((v, k) for k, v in labels.items()) | |
return labels | |
def preprocess(image): | |
image = np.array(image.resize((256, 256), Image.LANCZOS)) | |
image = image.astype('float32') / 255.0 | |
return image | |
def model_arc(): | |
model = tf.keras.Sequential([ | |
data_augmentation, | |
base_model, | |
tf.keras.layers.GlobalAveragePooling2D(), | |
tf.keras.layers.Dense(6, activation='softmax') | |
]) | |
learning_rate = 0.00001 | |
model.compile( | |
loss='sparse_categorical_crossentropy', | |
optimizer=tf.keras.optimizers.Adam(learning_rate), | |
metrics=['accuracy'] | |
) | |
return model |