from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, Flatten, MaxPooling2D, Dense, Dropout, SpatialDropout2D from tensorflow.keras.losses import sparse_categorical_crossentropy, binary_crossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np from PIL import Image def gen_labels(): train = 'Dataset/Train' train_generator = ImageDataGenerator(rescale=1/255) train_generator = train_generator.flow_from_directory(train, target_size=(256, 256), batch_size=32, class_mode='sparse') labels = train_generator.class_indices labels = dict((v, k) for k, v in labels.items()) return labels def preprocess(image): image = np.array(image.resize((256, 256), Image.LANCZOS)) image = image.astype('float32') / 255.0 return image def model_arc(): model = tf.keras.Sequential([ data_augmentation, base_model, tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Dense(6, activation='softmax') ]) learning_rate = 0.00001 model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate), metrics=['accuracy'] ) return model