UVIS / app.py
DurgaDeepak's picture
Update app.py
99ad111 verified
# UVIS - Gradio App with Upload, URL & Video Support
"""
This script launches the UVIS (Unified Visual Intelligence System) as a Gradio Web App.
Supports image, video, and URL-based media inputs for detection, segmentation, and depth estimation.
Outputs include scene blueprint, structured JSON, and downloadable results.
"""
import time
import logging
import traceback
import gradio as gr
from PIL import Image
import cv2
import timeout_decorator
import spaces
import tempfile
import shutil
import os
from registry import get_model
from core.describe_scene import describe_scene
from core.process import process_image
from core.input_handler import resolve_input, validate_video, validate_image
from utils.helpers import format_error, generate_session_id
from huggingface_hub import hf_hub_download
try:
shutil.rmtree(os.path.expanduser("~/.cache/huggingface"), ignore_errors=True)
shutil.rmtree("/home/user/.cache/huggingface", ignore_errors=True)
print("πŸ’₯ Nuked HF model cache from runtime.")
except Exception as e:
print("🚫 Failed to nuke cache:", e)
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Model mappings
DETECTION_MODEL_MAP = {
"YOLOv8-Nano": "yolov8n",
"YOLOv8-Small": "yolov8s",
"YOLOv8-Large": "yolov8l",
"YOLOv11-Beta": "yolov11b"
}
SEGMENTATION_MODEL_MAP = {
"SegFormer-B0": "segformer_b0",
"SegFormer-B5": "segformer_b5",
"DeepLabV3-ResNet50": "deeplabv3_resnet50"
}
DEPTH_MODEL_MAP = {
"MiDaS v21 Small 256": "midas_v21_small_256",
"MiDaS v21 384": "midas_v21_384",
"DPT Hybrid 384": "dpt_hybrid_384",
"DPT Swin2 Large 384": "dpt_swin2_large_384",
"DPT Beit Large 512": "dpt_beit_large_512"
}
# # Resource Limits
# MAX_IMAGE_MB = 15
# MAX_IMAGE_RES = (1920, 1080)
# MAX_VIDEO_MB = 50
# MAX_VIDEO_DURATION = 15 # seconds
@spaces.GPU
# def preload_models():
# """
# This function is needed to activate ZeroGPU. It must be decorated with @spaces.GPU.
# It can be used to warm up models or load them into memory.
# """
# from registry import get_model
# print("Warming up models for ZeroGPU...")
# get_model("detection", "yolov8n", device="cpu")
# get_model("segmentation", "deeplabv3_resnet50", device="cpu")
# get_model("depth", "midas_v21_small_256", device="cpu")
def handle(mode, media_upload, url,
run_det, det_model, det_confidence,
run_seg, seg_model,
run_depth, depth_model,
blend):
"""
Master handler for resolving input and processing.
Returns: (img_out, vid_out, json_out, zip_out)
"""
session_id = generate_session_id()
logger.info(f"Session ID: {session_id} | Handler activated with mode: {mode}")
start_time = time.time()
media = resolve_input(mode, media_upload, url)
if not media:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("No valid input provided. Please check your upload or URL."),
None
)
first_input = media[0]
# πŸ”§ Resolve dropdown label to model keys
resolved_det_model = DETECTION_MODEL_MAP.get(det_model, det_model)
resolved_seg_model = SEGMENTATION_MODEL_MAP.get(seg_model, seg_model)
resolved_depth_model = DEPTH_MODEL_MAP.get(depth_model, depth_model)
# --- VIDEO PATH ---
if isinstance(first_input, str) and first_input.lower().endswith((".mp4", ".mov", ".avi")):
valid, err = validate_video(first_input)
if not valid:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(err),
None
)
try:
_, msg, output_video_path = process_video(
video_path=first_input,
run_det=run_det,
det_model=resolved_det_model,
det_confidence=det_confidence,
run_seg=run_seg,
seg_model=resolved_seg_model,
run_depth=run_depth,
depth_model=resolved_depth_model,
blend=blend
)
return (
gr.update(visible=False), # hide image
gr.update(value=output_video_path, visible=True), # show video
msg,
output_video_path # for download
)
except Exception as e:
logger.error(f"Video processing failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(str(e)),
None
)
# --- IMAGE PATH ---
elif isinstance(first_input, Image.Image):
valid, err = validate_image(first_input)
if not valid:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(err),
None
)
try:
result_img, msg, output_zip = process_image(
image=first_input,
run_det=run_det,
det_model=resolved_det_model,
det_confidence=det_confidence,
run_seg=run_seg,
seg_model=resolved_seg_model,
run_depth=run_depth,
depth_model=resolved_depth_model,
blend=blend
)
return (
gr.update(value=result_img, visible=True), # show image
gr.update(visible=False), # hide video
msg,
output_zip
)
except timeout_decorator.timeout_decorator.TimeoutError:
logger.error("Image processing timed out.")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("Processing timed out. Try a smaller image or simpler model."),
None
)
except Exception as e:
traceback.print_exc()
logger.error(f"Image processing failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(str(e)),
None
)
logger.warning("Unsupported media type resolved.")
log_runtime(start_time)
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("Unsupported input type."),
None
)
def show_preview_from_upload(files):
if not files:
return gr.update(visible=False), gr.update(visible=False)
file = files[0]
filename = file.name.lower()
if filename.endswith((".png", ".jpg", ".jpeg", ".webp")):
img = Image.open(file).convert("RGB")
return gr.update(value=img, visible=True), gr.update(visible=False)
elif filename.endswith((".mp4", ".mov", ".avi")):
# Copy uploaded video to a known temp location
temp_dir = tempfile.mkdtemp()
ext = os.path.splitext(filename)[-1]
safe_path = os.path.join(temp_dir, f"uploaded_video{ext}")
with open(safe_path, "wb") as f:
f.write(file.read())
return gr.update(visible=False), gr.update(value=safe_path, visible=True)
return gr.update(visible=False), gr.update(visible=False)
def show_preview_from_url(url_input):
if not url_input:
return gr.update(visible=False), gr.update(visible=False)
path = url_input.strip().lower()
if path.endswith((".png", ".jpg", ".jpeg", ".webp")):
return gr.update(value=url_input, visible=True), gr.update(visible=False)
elif path.endswith((".mp4", ".mov", ".avi")):
return gr.update(visible=False), gr.update(value=url_input, visible=True)
return gr.update(visible=False), gr.update(visible=False)
def clear_model_cache():
"""
Deletes all model weight folders so they are redownloaded fresh.
"""
folders = [
"models/detection/weights",
"models/segmentation/weights",
"models/depth/weights"
]
for folder in folders:
shutil.rmtree(folder, ignore_errors=True)
logger.info(f" Cleared: {folder}")
return " Model cache cleared. Models will be reloaded on next run."
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Unified Visual Intelligence System (UVIS)")
with gr.Row():
# left panel
with gr.Column(scale=2):
# Input Mode Toggle
mode = gr.Radio(["Upload", "URL"], value="Upload", label="Input Mode")
# File upload: accepts multiple images or one video (user chooses wisely)
media_upload = gr.File(
label="Upload Images (1–5) or 1 Video",
file_types=["image", ".mp4", ".mov", ".avi"],
file_count="multiple",
visible=True
)
# URL input
url = gr.Textbox(label="URL (Image/Video)", visible=False)
# Toggle visibility
def toggle_inputs(selected_mode):
return [
gr.update(visible=(selected_mode == "Upload")), # media_upload
gr.update(visible=(selected_mode == "URL")), # url
gr.update(visible=False), # preview_image
gr.update(visible=False) # preview_video
]
mode.change(toggle_inputs, inputs=mode, outputs=[media_upload, url])
# Visibility logic function
def toggle_visibility(checked):
return gr.update(visible=checked)
# def toggle_det_visibility(checked):
# return [gr.update(visible=checked), gr.update(visible=checked)]
run_det = gr.Checkbox(label="Object Detection")
run_seg = gr.Checkbox(label="Semantic Segmentation")
run_depth = gr.Checkbox(label="Depth Estimation")
with gr.Row():
with gr.Column(visible=False) as OD_Settings:
with gr.Accordion("Object Detection Settings", open=True):
det_model = gr.Dropdown(choices=list(DETECTION_MODEL_MAP), label="Detection Model")
det_confidence = gr.Slider(0.1, 1.0, 0.5, label="Detection Confidence Threshold")
nms_thresh = gr.Slider(0.1, 1.0, 0.45, label="NMS Threshold")
max_det = gr.Slider(1, 100, 20, step=1, label="Max Detections")
iou_thresh = gr.Slider(0.1, 1.0, 0.5, label="IoU Threshold")
class_filter = gr.CheckboxGroup(["Person", "Car", "Dog"], label="Class Filter")
with gr.Column(visible=False) as SS_Settings:
with gr.Accordion("Semantic Segmentation Settings", open=True):
seg_model = gr.Dropdown(choices=list(SEGMENTATION_MODEL_MAP), label="Segmentation Model")
resize_strategy = gr.Dropdown(["Crop", "Pad", "Scale"], label="Resize Strategy")
overlay_alpha = gr.Slider(0.0, 1.0, 0.5, label="Overlay Opacity")
seg_classes = gr.CheckboxGroup(["Road", "Sky", "Building"], label="Target Classes")
enable_crf = gr.Checkbox(label="Postprocessing (CRF)")
with gr.Column(visible=False) as DE_Settings:
with gr.Accordion("Depth Estimation Settings", open=True):
depth_model = gr.Dropdown(choices=list(DEPTH_MODEL_MAP), label="Depth Model")
output_type = gr.Dropdown(["Raw", "Disparity", "Scaled"], label="Output Type")
colormap = gr.Dropdown(["Jet", "Viridis", "Plasma"], label="Colormap")
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
normalize = gr.Checkbox(label="Normalize Depth")
max_depth = gr.Slider(0.1, 10.0, 5.0, label="Max Depth (meters)")
# Attach Visibility Logic
run_det.change(fn=toggle_visibility, inputs=[run_det], outputs=[OD_Settings])
run_seg.change(fn=toggle_visibility, inputs=[run_seg], outputs=[SS_Settings])
run_depth.change(fn=toggle_visibility, inputs=[run_depth], outputs=[DE_Settings])
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
# Run Button
run = gr.Button("Run Analysis")
#Right panel
with gr.Column(scale=1):
# single_img_preview = gr.Image(label="Preview (Image)", visible=False)
# gallery_preview = gr.Gallery(label="Preview (Gallery)", columns=3, height="auto", visible=False)
# video_preview = gr.Video(label="Preview (Video)", visible=False)
# Only one is shown at a time β€” image or video
img_out = gr.Image(label="Preview / Processed Output", visible=False)
vid_out = gr.Video(label="Preview / Processed Video", visible=False, streaming=True, autoplay=True)
json_out = gr.JSON(label="Scene JSON")
zip_out = gr.File(label="Download Results")
clear_button = gr.Button("🧹 Clear Model Cache")
status_box = gr.Textbox(label="Status", interactive=False)
clear_button.click(fn=clear_model_cache, inputs=[], outputs=[status_box])
media_upload.change(show_preview_from_upload, inputs=media_upload, outputs=[img_out, vid_out])
url.submit(show_preview_from_url, inputs=url, outputs=[img_out, vid_out])
# Unified run click β†’ switch visibility based on image or video output
def route_output(image_output, json_output, zip_file):
# Show img_out if image was returned, else show video
if isinstance(image_output, Image.Image):
return gr.update(value=image_output, visible=True), gr.update(visible=False), json_output, zip_file
elif isinstance(zip_file, str) and zip_file.endswith(".mp4"):
return gr.update(visible=False), gr.update(value=zip_file, visible=True), json_output, zip_file
else:
return gr.update(visible=False), gr.update(visible=False), json_output, zip_file
# # Output Tabs
# with gr.Tab("Scene JSON"):
# json_out = gr.JSON()
# with gr.Tab("Scene Blueprint"):
# img_out = gr.Image()
# with gr.Tab("Download"):
# zip_out = gr.File()
# Button Click Event
run.click(
fn=handle,
inputs=[
mode, media_upload, url,
run_det, det_model, det_confidence,
run_seg, seg_model,
run_depth, depth_model,
blend
],
outputs=[
img_out, # will be visible only if it's an image
vid_out, # will be visible only if it's a video
json_out,
zip_out
]
)
# Footer Section
gr.Markdown("---")
gr.Markdown(
"""
<div style='text-align: center; font-size: 14px;'>
Built by <b>Durga Deepak Valluri</b><br>
<a href="https://github.com/DurgaDeepakValluri" target="_blank">GitHub</a> |
<a href="https://deecoded.io" target="_blank">Website</a> |
<a href="https://www.linkedin.com/in/durga-deepak-valluri" target="_blank">LinkedIn</a>
</div>
""",
)
# Launch the Gradio App
demo.launch(share=True)