Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,659 Bytes
f289d8a 2ff9705 b207201 2ff9705 f289d8a 2ff9705 d7c3dc6 75a9604 0a4697d 2ff9705 f289d8a 58d1ad8 5fcf694 4bf2ad3 64ed036 2ff9705 0a4697d f289d8a b44a48c f289d8a b44a48c f289d8a 3340b09 f289d8a 3340b09 99ad111 f289d8a 49d2559 a9d8551 921b5bc 64ed036 377c3c6 f289d8a 377c3c6 f289d8a 0a46f13 f289d8a 377c3c6 f289d8a 5fcf694 377c3c6 b0811a8 5fcf694 377c3c6 5fcf694 b0811a8 5fcf694 b0811a8 5fcf694 b0811a8 5fcf694 377c3c6 5fcf694 377c3c6 5fcf694 377c3c6 5fcf694 377c3c6 5fcf694 b0811a8 5fcf694 b0811a8 5fcf694 b0811a8 5fcf694 377c3c6 5fcf694 377c3c6 5fcf694 b207201 5fcf694 377c3c6 f289d8a 377c3c6 5fcf694 b0811a8 5fcf694 75a9604 5fcf694 d7c3dc6 5fcf694 d7c3dc6 75a9604 d7c3dc6 75a9604 f334785 d7c3dc6 75a9604 f334785 5fcf694 f289d8a 74041a5 f289d8a 9438399 2ec5667 9438399 96f48ba 9438399 a67a089 9438399 196bb2a 429475e 9ec45ba 429475e a67a089 9438399 2ec5667 7eff7af 2ec5667 c3bbe69 20f45fe 7eff7af 2ec5667 c3bbe69 20f45fe 7eff7af 2ec5667 c3bbe69 9438399 525f20c 2ec5667 c8fb6b4 9438399 5fcf694 75a9604 9438399 74041a5 196bb2a 1ec606c 9438399 f289d8a 5fcf694 377c3c6 5fcf694 377c3c6 5fcf694 f289d8a 9438399 f289d8a d3ceedc 9438399 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
# UVIS - Gradio App with Upload, URL & Video Support
"""
This script launches the UVIS (Unified Visual Intelligence System) as a Gradio Web App.
Supports image, video, and URL-based media inputs for detection, segmentation, and depth estimation.
Outputs include scene blueprint, structured JSON, and downloadable results.
"""
import time
import logging
import traceback
import gradio as gr
from PIL import Image
import cv2
import timeout_decorator
import spaces
import tempfile
import shutil
import os
from registry import get_model
from core.describe_scene import describe_scene
from core.process import process_image
from core.input_handler import resolve_input, validate_video, validate_image
from utils.helpers import format_error, generate_session_id
from huggingface_hub import hf_hub_download
try:
shutil.rmtree(os.path.expanduser("~/.cache/huggingface"), ignore_errors=True)
shutil.rmtree("/home/user/.cache/huggingface", ignore_errors=True)
print("π₯ Nuked HF model cache from runtime.")
except Exception as e:
print("π« Failed to nuke cache:", e)
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Model mappings
DETECTION_MODEL_MAP = {
"YOLOv8-Nano": "yolov8n",
"YOLOv8-Small": "yolov8s",
"YOLOv8-Large": "yolov8l",
"YOLOv11-Beta": "yolov11b"
}
SEGMENTATION_MODEL_MAP = {
"SegFormer-B0": "segformer_b0",
"SegFormer-B5": "segformer_b5",
"DeepLabV3-ResNet50": "deeplabv3_resnet50"
}
DEPTH_MODEL_MAP = {
"MiDaS v21 Small 256": "midas_v21_small_256",
"MiDaS v21 384": "midas_v21_384",
"DPT Hybrid 384": "dpt_hybrid_384",
"DPT Swin2 Large 384": "dpt_swin2_large_384",
"DPT Beit Large 512": "dpt_beit_large_512"
}
# # Resource Limits
# MAX_IMAGE_MB = 15
# MAX_IMAGE_RES = (1920, 1080)
# MAX_VIDEO_MB = 50
# MAX_VIDEO_DURATION = 15 # seconds
@spaces.GPU
# def preload_models():
# """
# This function is needed to activate ZeroGPU. It must be decorated with @spaces.GPU.
# It can be used to warm up models or load them into memory.
# """
# from registry import get_model
# print("Warming up models for ZeroGPU...")
# get_model("detection", "yolov8n", device="cpu")
# get_model("segmentation", "deeplabv3_resnet50", device="cpu")
# get_model("depth", "midas_v21_small_256", device="cpu")
def handle(mode, media_upload, url,
run_det, det_model, det_confidence,
run_seg, seg_model,
run_depth, depth_model,
blend):
"""
Master handler for resolving input and processing.
Returns: (img_out, vid_out, json_out, zip_out)
"""
session_id = generate_session_id()
logger.info(f"Session ID: {session_id} | Handler activated with mode: {mode}")
start_time = time.time()
media = resolve_input(mode, media_upload, url)
if not media:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("No valid input provided. Please check your upload or URL."),
None
)
first_input = media[0]
# π§ Resolve dropdown label to model keys
resolved_det_model = DETECTION_MODEL_MAP.get(det_model, det_model)
resolved_seg_model = SEGMENTATION_MODEL_MAP.get(seg_model, seg_model)
resolved_depth_model = DEPTH_MODEL_MAP.get(depth_model, depth_model)
# --- VIDEO PATH ---
if isinstance(first_input, str) and first_input.lower().endswith((".mp4", ".mov", ".avi")):
valid, err = validate_video(first_input)
if not valid:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(err),
None
)
try:
_, msg, output_video_path = process_video(
video_path=first_input,
run_det=run_det,
det_model=resolved_det_model,
det_confidence=det_confidence,
run_seg=run_seg,
seg_model=resolved_seg_model,
run_depth=run_depth,
depth_model=resolved_depth_model,
blend=blend
)
return (
gr.update(visible=False), # hide image
gr.update(value=output_video_path, visible=True), # show video
msg,
output_video_path # for download
)
except Exception as e:
logger.error(f"Video processing failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(str(e)),
None
)
# --- IMAGE PATH ---
elif isinstance(first_input, Image.Image):
valid, err = validate_image(first_input)
if not valid:
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(err),
None
)
try:
result_img, msg, output_zip = process_image(
image=first_input,
run_det=run_det,
det_model=resolved_det_model,
det_confidence=det_confidence,
run_seg=run_seg,
seg_model=resolved_seg_model,
run_depth=run_depth,
depth_model=resolved_depth_model,
blend=blend
)
return (
gr.update(value=result_img, visible=True), # show image
gr.update(visible=False), # hide video
msg,
output_zip
)
except timeout_decorator.timeout_decorator.TimeoutError:
logger.error("Image processing timed out.")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("Processing timed out. Try a smaller image or simpler model."),
None
)
except Exception as e:
traceback.print_exc()
logger.error(f"Image processing failed: {e}")
return (
gr.update(visible=False),
gr.update(visible=False),
format_error(str(e)),
None
)
logger.warning("Unsupported media type resolved.")
log_runtime(start_time)
return (
gr.update(visible=False),
gr.update(visible=False),
format_error("Unsupported input type."),
None
)
def show_preview_from_upload(files):
if not files:
return gr.update(visible=False), gr.update(visible=False)
file = files[0]
filename = file.name.lower()
if filename.endswith((".png", ".jpg", ".jpeg", ".webp")):
img = Image.open(file).convert("RGB")
return gr.update(value=img, visible=True), gr.update(visible=False)
elif filename.endswith((".mp4", ".mov", ".avi")):
# Copy uploaded video to a known temp location
temp_dir = tempfile.mkdtemp()
ext = os.path.splitext(filename)[-1]
safe_path = os.path.join(temp_dir, f"uploaded_video{ext}")
with open(safe_path, "wb") as f:
f.write(file.read())
return gr.update(visible=False), gr.update(value=safe_path, visible=True)
return gr.update(visible=False), gr.update(visible=False)
def show_preview_from_url(url_input):
if not url_input:
return gr.update(visible=False), gr.update(visible=False)
path = url_input.strip().lower()
if path.endswith((".png", ".jpg", ".jpeg", ".webp")):
return gr.update(value=url_input, visible=True), gr.update(visible=False)
elif path.endswith((".mp4", ".mov", ".avi")):
return gr.update(visible=False), gr.update(value=url_input, visible=True)
return gr.update(visible=False), gr.update(visible=False)
def clear_model_cache():
"""
Deletes all model weight folders so they are redownloaded fresh.
"""
folders = [
"models/detection/weights",
"models/segmentation/weights",
"models/depth/weights"
]
for folder in folders:
shutil.rmtree(folder, ignore_errors=True)
logger.info(f" Cleared: {folder}")
return " Model cache cleared. Models will be reloaded on next run."
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("## Unified Visual Intelligence System (UVIS)")
with gr.Row():
# left panel
with gr.Column(scale=2):
# Input Mode Toggle
mode = gr.Radio(["Upload", "URL"], value="Upload", label="Input Mode")
# File upload: accepts multiple images or one video (user chooses wisely)
media_upload = gr.File(
label="Upload Images (1β5) or 1 Video",
file_types=["image", ".mp4", ".mov", ".avi"],
file_count="multiple",
visible=True
)
# URL input
url = gr.Textbox(label="URL (Image/Video)", visible=False)
# Toggle visibility
def toggle_inputs(selected_mode):
return [
gr.update(visible=(selected_mode == "Upload")), # media_upload
gr.update(visible=(selected_mode == "URL")), # url
gr.update(visible=False), # preview_image
gr.update(visible=False) # preview_video
]
mode.change(toggle_inputs, inputs=mode, outputs=[media_upload, url])
# Visibility logic function
def toggle_visibility(checked):
return gr.update(visible=checked)
# def toggle_det_visibility(checked):
# return [gr.update(visible=checked), gr.update(visible=checked)]
run_det = gr.Checkbox(label="Object Detection")
run_seg = gr.Checkbox(label="Semantic Segmentation")
run_depth = gr.Checkbox(label="Depth Estimation")
with gr.Row():
with gr.Column(visible=False) as OD_Settings:
with gr.Accordion("Object Detection Settings", open=True):
det_model = gr.Dropdown(choices=list(DETECTION_MODEL_MAP), label="Detection Model")
det_confidence = gr.Slider(0.1, 1.0, 0.5, label="Detection Confidence Threshold")
nms_thresh = gr.Slider(0.1, 1.0, 0.45, label="NMS Threshold")
max_det = gr.Slider(1, 100, 20, step=1, label="Max Detections")
iou_thresh = gr.Slider(0.1, 1.0, 0.5, label="IoU Threshold")
class_filter = gr.CheckboxGroup(["Person", "Car", "Dog"], label="Class Filter")
with gr.Column(visible=False) as SS_Settings:
with gr.Accordion("Semantic Segmentation Settings", open=True):
seg_model = gr.Dropdown(choices=list(SEGMENTATION_MODEL_MAP), label="Segmentation Model")
resize_strategy = gr.Dropdown(["Crop", "Pad", "Scale"], label="Resize Strategy")
overlay_alpha = gr.Slider(0.0, 1.0, 0.5, label="Overlay Opacity")
seg_classes = gr.CheckboxGroup(["Road", "Sky", "Building"], label="Target Classes")
enable_crf = gr.Checkbox(label="Postprocessing (CRF)")
with gr.Column(visible=False) as DE_Settings:
with gr.Accordion("Depth Estimation Settings", open=True):
depth_model = gr.Dropdown(choices=list(DEPTH_MODEL_MAP), label="Depth Model")
output_type = gr.Dropdown(["Raw", "Disparity", "Scaled"], label="Output Type")
colormap = gr.Dropdown(["Jet", "Viridis", "Plasma"], label="Colormap")
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
normalize = gr.Checkbox(label="Normalize Depth")
max_depth = gr.Slider(0.1, 10.0, 5.0, label="Max Depth (meters)")
# Attach Visibility Logic
run_det.change(fn=toggle_visibility, inputs=[run_det], outputs=[OD_Settings])
run_seg.change(fn=toggle_visibility, inputs=[run_seg], outputs=[SS_Settings])
run_depth.change(fn=toggle_visibility, inputs=[run_depth], outputs=[DE_Settings])
blend = gr.Slider(0.0, 1.0, 0.5, label="Overlay Blend")
# Run Button
run = gr.Button("Run Analysis")
#Right panel
with gr.Column(scale=1):
# single_img_preview = gr.Image(label="Preview (Image)", visible=False)
# gallery_preview = gr.Gallery(label="Preview (Gallery)", columns=3, height="auto", visible=False)
# video_preview = gr.Video(label="Preview (Video)", visible=False)
# Only one is shown at a time β image or video
img_out = gr.Image(label="Preview / Processed Output", visible=False)
vid_out = gr.Video(label="Preview / Processed Video", visible=False, streaming=True, autoplay=True)
json_out = gr.JSON(label="Scene JSON")
zip_out = gr.File(label="Download Results")
clear_button = gr.Button("π§Ή Clear Model Cache")
status_box = gr.Textbox(label="Status", interactive=False)
clear_button.click(fn=clear_model_cache, inputs=[], outputs=[status_box])
media_upload.change(show_preview_from_upload, inputs=media_upload, outputs=[img_out, vid_out])
url.submit(show_preview_from_url, inputs=url, outputs=[img_out, vid_out])
# Unified run click β switch visibility based on image or video output
def route_output(image_output, json_output, zip_file):
# Show img_out if image was returned, else show video
if isinstance(image_output, Image.Image):
return gr.update(value=image_output, visible=True), gr.update(visible=False), json_output, zip_file
elif isinstance(zip_file, str) and zip_file.endswith(".mp4"):
return gr.update(visible=False), gr.update(value=zip_file, visible=True), json_output, zip_file
else:
return gr.update(visible=False), gr.update(visible=False), json_output, zip_file
# # Output Tabs
# with gr.Tab("Scene JSON"):
# json_out = gr.JSON()
# with gr.Tab("Scene Blueprint"):
# img_out = gr.Image()
# with gr.Tab("Download"):
# zip_out = gr.File()
# Button Click Event
run.click(
fn=handle,
inputs=[
mode, media_upload, url,
run_det, det_model, det_confidence,
run_seg, seg_model,
run_depth, depth_model,
blend
],
outputs=[
img_out, # will be visible only if it's an image
vid_out, # will be visible only if it's a video
json_out,
zip_out
]
)
# Footer Section
gr.Markdown("---")
gr.Markdown(
"""
<div style='text-align: center; font-size: 14px;'>
Built by <b>Durga Deepak Valluri</b><br>
<a href="https://github.com/DurgaDeepakValluri" target="_blank">GitHub</a> |
<a href="https://deecoded.io" target="_blank">Website</a> |
<a href="https://www.linkedin.com/in/durga-deepak-valluri" target="_blank">LinkedIn</a>
</div>
""",
)
# Launch the Gradio App
demo.launch(share=True)
|