Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel | |
from transformers.models.wav2vec2.modeling_wav2vec2 import ( | |
Wav2Vec2Model, | |
Wav2Vec2PreTrainedModel, | |
) | |
from torch.nn.functional import silu | |
from torch.nn.functional import softplus | |
from einops import rearrange, einsum | |
from torch import Tensor | |
from einops import rearrange | |
# DEVICE = torch.device('cuda') | |
DEVICE = torch.device('cpu') | |
## Audio models | |
class CustomMambaBlock(nn.Module): | |
def __init__(self, d_input, d_model, dropout=0.1): | |
super().__init__() | |
self.in_proj = nn.Linear(d_input, d_model) | |
self.s_B = nn.Linear(d_model, d_model) | |
self.s_C = nn.Linear(d_model, d_model) | |
self.out_proj = nn.Linear(d_model, d_input) | |
self.norm = nn.LayerNorm(d_input) | |
self.dropout = nn.Dropout(dropout) | |
self.activation = nn.ReLU() | |
def forward(self, x): | |
x_in = x # сохраняем вход | |
x = self.in_proj(x) | |
B = self.s_B(x) | |
C = self.s_C(x) | |
x = x + B + C | |
x = self.activation(x) | |
x = self.out_proj(x) | |
x = self.dropout(x) | |
x = self.norm(x + x_in) # residual + norm | |
return x | |
class CustomMambaClassifier(nn.Module): | |
def __init__(self, input_size=1024, d_model=256, num_layers=2, num_classes=7, dropout=0.1): | |
super().__init__() | |
self.input_proj = nn.Linear(input_size, d_model) | |
self.blocks = nn.ModuleList([ | |
CustomMambaBlock(d_model, d_model, dropout=dropout) | |
for _ in range(num_layers) | |
]) | |
self.fc = nn.Linear(d_model, num_classes) | |
def forward(self, x, lengths, with_features=False): | |
# x: (batch, seq_length, input_size) | |
x = self.input_proj(x) | |
for block in self.blocks: | |
x = block(x) | |
pooled = [] | |
for i, l in enumerate(lengths): | |
if l > 0: | |
pooled.append(x[i, :l, :].mean(dim=0)) | |
else: | |
pooled.append(torch.zeros(x.size(2), device=x.device)) | |
pooled = torch.stack(pooled, dim=0) | |
if with_features: | |
return self.fc(pooled), x | |
else: | |
return self.fc(pooled) | |
def get_model_mamba(params): | |
return CustomMambaClassifier( | |
input_size=params.get("input_size", 1024), | |
d_model=params.get("d_model", 256), | |
num_layers=params.get("num_layers", 2), | |
num_classes=params.get("num_classes", 7), | |
dropout=params.get("dropout", 0.1) | |
) | |
class EmotionModel(Wav2Vec2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.wav2vec2 = Wav2Vec2Model(config) | |
self.init_weights() | |
def forward(self, input_values): | |
outputs = self.wav2vec2(input_values) | |
hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size) | |
return hidden_states | |
## Text models | |
class Embedding(): | |
def __init__(self, model_name='jinaai/jina-embeddings-v3', pooling=None): | |
self.model_name = model_name | |
self.pooling = pooling | |
self.device = DEVICE | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name, code_revision='da863dd04a4e5dce6814c6625adfba87b83838aa', trust_remote_code=True) | |
self.model = AutoModel.from_pretrained(model_name, code_revision='da863dd04a4e5dce6814c6625adfba87b83838aa', trust_remote_code=True).to(self.device) | |
self.model.eval() | |
def _mean_pooling(self, X): | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
encoded_input = self.tokenizer(X, padding=True, truncation=True, return_tensors='pt').to(self.device) | |
with torch.no_grad(): | |
model_output = self.model(**encoded_input) | |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) | |
return sentence_embeddings.unsqueeze(1) | |
def get_embeddings(self, X, max_len): | |
encoded_input = self.tokenizer(X, padding=True, truncation=True, return_tensors='pt').to(self.device) | |
with torch.no_grad(): | |
features = self.model(**encoded_input)[0].detach().cpu().float().numpy() | |
res = np.pad(features[:, :max_len, :], ((0, 0), (0, max(0, max_len - features.shape[1])), (0, 0)), "constant") | |
return torch.tensor(res) | |
class RMSNorm(nn.Module): | |
def __init__(self, d_model: int, eps: float = 1e-8) -> None: | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(d_model)) | |
def forward(self, x: Tensor) -> Tensor: | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim = True) + self.eps) * self.weight | |
class Mamba(nn.Module): | |
def __init__(self, num_layers, d_input, d_model, d_state=16, d_discr=None, ker_size=4, num_classes=7, max_tokens=95, model_name='jina', pooling=None): | |
super().__init__() | |
mamba_par = { | |
'd_input' : d_input, | |
'd_model' : d_model, | |
'd_state' : d_state, | |
'd_discr' : d_discr, | |
'ker_size': ker_size | |
} | |
self.model_name = model_name | |
self.max_tokens = max_tokens | |
embed = Embedding(model_name, pooling) | |
self.embedding = embed.get_embeddings | |
self.layers = nn.ModuleList([nn.ModuleList([MambaBlock(**mamba_par), RMSNorm(d_input)]) for _ in range(num_layers)]) | |
self.fc_out = nn.Linear(d_input, num_classes) | |
self.device = DEVICE | |
def forward(self, seq, cache=None, with_features=True): | |
seq = self.embedding(seq, self.max_tokens).to(self.device) | |
for mamba, norm in self.layers: | |
out, cache = mamba(norm(seq), cache) | |
seq = out + seq | |
if with_features: | |
return self.fc_out(seq.mean(dim = 1)), seq | |
else: | |
return self.fc_out(seq.mean(dim = 1)) | |
class MambaBlock(nn.Module): | |
def __init__(self, d_input, d_model, d_state=16, d_discr=None, ker_size=4): | |
super().__init__() | |
d_discr = d_discr if d_discr is not None else d_model // 16 | |
self.in_proj = nn.Linear(d_input, 2 * d_model, bias=False) | |
self.out_proj = nn.Linear(d_model, d_input, bias=False) | |
self.s_B = nn.Linear(d_model, d_state, bias=False) | |
self.s_C = nn.Linear(d_model, d_state, bias=False) | |
self.s_D = nn.Sequential(nn.Linear(d_model, d_discr, bias=False), nn.Linear(d_discr, d_model, bias=False),) | |
self.conv = nn.Conv1d( | |
in_channels=d_model, | |
out_channels=d_model, | |
kernel_size=ker_size, | |
padding=ker_size - 1, | |
groups=d_model, | |
bias=True, | |
) | |
self.A = nn.Parameter(torch.arange(1, d_state + 1, dtype=torch.float).repeat(d_model, 1)) | |
self.D = nn.Parameter(torch.ones(d_model, dtype=torch.float)) | |
self.device = DEVICE | |
def forward(self, seq, cache=None): | |
b, l, d = seq.shape | |
(prev_hid, prev_inp) = cache if cache is not None else (None, None) | |
a, b = self.in_proj(seq).chunk(2, dim=-1) | |
x = rearrange(a, 'b l d -> b d l') | |
x = x if prev_inp is None else torch.cat((prev_inp, x), dim=-1) | |
a = self.conv(x)[..., :l] | |
a = rearrange(a, 'b d l -> b l d') | |
a = silu(a) | |
a, hid = self.ssm(a, prev_hid=prev_hid) | |
b = silu(b) | |
out = a * b | |
out = self.out_proj(out) | |
if cache: | |
cache = (hid.squeeze(), x[..., 1:]) | |
return out, cache | |
def ssm(self, seq, prev_hid): | |
A = -self.A | |
D = +self.D | |
B = self.s_B(seq) | |
C = self.s_C(seq) | |
s = softplus(D + self.s_D(seq)) | |
A_bar = einsum(torch.exp(A), s, 'd s, b l d -> b l d s') | |
B_bar = einsum( B, s, 'b l s, b l d -> b l d s') | |
X_bar = einsum(B_bar, seq, 'b l d s, b l d -> b l d s') | |
hid = self._hid_states(A_bar, X_bar, prev_hid=prev_hid) | |
out = einsum(hid, C, 'b l d s, b l s -> b l d') | |
out = out + D * seq | |
return out, hid | |
def _hid_states(self, A, X, prev_hid=None): | |
b, l, d, s = A.shape | |
A = rearrange(A, 'b l d s -> l b d s') | |
X = rearrange(X, 'b l d s -> l b d s') | |
if prev_hid is not None: | |
return rearrange(A * prev_hid + X, 'l b d s -> b l d s') | |
h = torch.zeros(b, d, s, device=self.device) | |
return torch.stack([h := A_t * h + X_t for A_t, X_t in zip(A, X)], dim=1) | |