import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) from torch.nn.functional import silu from torch.nn.functional import softplus from einops import rearrange, einsum from torch import Tensor from einops import rearrange # DEVICE = torch.device('cuda') DEVICE = torch.device('cpu') ## Audio models class CustomMambaBlock(nn.Module): def __init__(self, d_input, d_model, dropout=0.1): super().__init__() self.in_proj = nn.Linear(d_input, d_model) self.s_B = nn.Linear(d_model, d_model) self.s_C = nn.Linear(d_model, d_model) self.out_proj = nn.Linear(d_model, d_input) self.norm = nn.LayerNorm(d_input) self.dropout = nn.Dropout(dropout) self.activation = nn.ReLU() def forward(self, x): x_in = x # сохраняем вход x = self.in_proj(x) B = self.s_B(x) C = self.s_C(x) x = x + B + C x = self.activation(x) x = self.out_proj(x) x = self.dropout(x) x = self.norm(x + x_in) # residual + norm return x class CustomMambaClassifier(nn.Module): def __init__(self, input_size=1024, d_model=256, num_layers=2, num_classes=7, dropout=0.1): super().__init__() self.input_proj = nn.Linear(input_size, d_model) self.blocks = nn.ModuleList([ CustomMambaBlock(d_model, d_model, dropout=dropout) for _ in range(num_layers) ]) self.fc = nn.Linear(d_model, num_classes) def forward(self, x, lengths, with_features=False): # x: (batch, seq_length, input_size) x = self.input_proj(x) for block in self.blocks: x = block(x) pooled = [] for i, l in enumerate(lengths): if l > 0: pooled.append(x[i, :l, :].mean(dim=0)) else: pooled.append(torch.zeros(x.size(2), device=x.device)) pooled = torch.stack(pooled, dim=0) if with_features: return self.fc(pooled), x else: return self.fc(pooled) def get_model_mamba(params): return CustomMambaClassifier( input_size=params.get("input_size", 1024), d_model=params.get("d_model", 256), num_layers=params.get("num_layers", 2), num_classes=params.get("num_classes", 7), dropout=params.get("dropout", 0.1) ) class EmotionModel(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.wav2vec2 = Wav2Vec2Model(config) self.init_weights() def forward(self, input_values): outputs = self.wav2vec2(input_values) hidden_states = outputs[0] # (batch_size, sequence_length, hidden_size) return hidden_states ## Text models class Embedding(): def __init__(self, model_name='jinaai/jina-embeddings-v3', pooling=None): self.model_name = model_name self.pooling = pooling self.device = DEVICE self.tokenizer = AutoTokenizer.from_pretrained(model_name, code_revision='da863dd04a4e5dce6814c6625adfba87b83838aa', trust_remote_code=True) self.model = AutoModel.from_pretrained(model_name, code_revision='da863dd04a4e5dce6814c6625adfba87b83838aa', trust_remote_code=True).to(self.device) self.model.eval() def _mean_pooling(self, X): def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) encoded_input = self.tokenizer(X, padding=True, truncation=True, return_tensors='pt').to(self.device) with torch.no_grad(): model_output = self.model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) return sentence_embeddings.unsqueeze(1) def get_embeddings(self, X, max_len): encoded_input = self.tokenizer(X, padding=True, truncation=True, return_tensors='pt').to(self.device) with torch.no_grad(): features = self.model(**encoded_input)[0].detach().cpu().float().numpy() res = np.pad(features[:, :max_len, :], ((0, 0), (0, max(0, max_len - features.shape[1])), (0, 0)), "constant") return torch.tensor(res) class RMSNorm(nn.Module): def __init__(self, d_model: int, eps: float = 1e-8) -> None: super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(d_model)) def forward(self, x: Tensor) -> Tensor: return x * torch.rsqrt(x.pow(2).mean(-1, keepdim = True) + self.eps) * self.weight class Mamba(nn.Module): def __init__(self, num_layers, d_input, d_model, d_state=16, d_discr=None, ker_size=4, num_classes=7, max_tokens=95, model_name='jina', pooling=None): super().__init__() mamba_par = { 'd_input' : d_input, 'd_model' : d_model, 'd_state' : d_state, 'd_discr' : d_discr, 'ker_size': ker_size } self.model_name = model_name self.max_tokens = max_tokens embed = Embedding(model_name, pooling) self.embedding = embed.get_embeddings self.layers = nn.ModuleList([nn.ModuleList([MambaBlock(**mamba_par), RMSNorm(d_input)]) for _ in range(num_layers)]) self.fc_out = nn.Linear(d_input, num_classes) self.device = DEVICE def forward(self, seq, cache=None, with_features=True): seq = self.embedding(seq, self.max_tokens).to(self.device) for mamba, norm in self.layers: out, cache = mamba(norm(seq), cache) seq = out + seq if with_features: return self.fc_out(seq.mean(dim = 1)), seq else: return self.fc_out(seq.mean(dim = 1)) class MambaBlock(nn.Module): def __init__(self, d_input, d_model, d_state=16, d_discr=None, ker_size=4): super().__init__() d_discr = d_discr if d_discr is not None else d_model // 16 self.in_proj = nn.Linear(d_input, 2 * d_model, bias=False) self.out_proj = nn.Linear(d_model, d_input, bias=False) self.s_B = nn.Linear(d_model, d_state, bias=False) self.s_C = nn.Linear(d_model, d_state, bias=False) self.s_D = nn.Sequential(nn.Linear(d_model, d_discr, bias=False), nn.Linear(d_discr, d_model, bias=False),) self.conv = nn.Conv1d( in_channels=d_model, out_channels=d_model, kernel_size=ker_size, padding=ker_size - 1, groups=d_model, bias=True, ) self.A = nn.Parameter(torch.arange(1, d_state + 1, dtype=torch.float).repeat(d_model, 1)) self.D = nn.Parameter(torch.ones(d_model, dtype=torch.float)) self.device = DEVICE def forward(self, seq, cache=None): b, l, d = seq.shape (prev_hid, prev_inp) = cache if cache is not None else (None, None) a, b = self.in_proj(seq).chunk(2, dim=-1) x = rearrange(a, 'b l d -> b d l') x = x if prev_inp is None else torch.cat((prev_inp, x), dim=-1) a = self.conv(x)[..., :l] a = rearrange(a, 'b d l -> b l d') a = silu(a) a, hid = self.ssm(a, prev_hid=prev_hid) b = silu(b) out = a * b out = self.out_proj(out) if cache: cache = (hid.squeeze(), x[..., 1:]) return out, cache def ssm(self, seq, prev_hid): A = -self.A D = +self.D B = self.s_B(seq) C = self.s_C(seq) s = softplus(D + self.s_D(seq)) A_bar = einsum(torch.exp(A), s, 'd s, b l d -> b l d s') B_bar = einsum( B, s, 'b l s, b l d -> b l d s') X_bar = einsum(B_bar, seq, 'b l d s, b l d -> b l d s') hid = self._hid_states(A_bar, X_bar, prev_hid=prev_hid) out = einsum(hid, C, 'b l d s, b l s -> b l d') out = out + D * seq return out, hid def _hid_states(self, A, X, prev_hid=None): b, l, d, s = A.shape A = rearrange(A, 'b l d s -> l b d s') X = rearrange(X, 'b l d s -> l b d s') if prev_hid is not None: return rearrange(A * prev_hid + X, 'l b d s -> b l d s') h = torch.zeros(b, d, s, device=self.device) return torch.stack([h := A_t * h + X_t for A_t, X_t in zip(A, X)], dim=1)