ocr-pdf / app.py
Deadmon's picture
Update app.py
36ada58 verified
raw
history blame
5.49 kB
import os
from pathlib import Path
import fitz # PyMuPDF for PDF handling
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration # For image captioning
import torch
import gradio as gr
# Create output directory
OUTPUT_DIR = Path("outputs")
OUTPUT_DIR.mkdir(exist_ok=True)
def generate_page_image(pdf_path, page_num):
"""
Generate an image from a specific PDF page for analysis
"""
try:
# Open the PDF
pdf_document = fitz.open(pdf_path)
page = pdf_document[page_num]
# Get the page dimensions to determine appropriate resolution
rect = page.rect
width = rect.width
height = rect.height
# Calculate appropriate zoom factor to get good quality images
# Aim for approximately 2000 pixels on the longest side
zoom = 2000 / max(width, height)
# Create a transformation matrix
mat = fitz.Matrix(zoom, zoom)
# Render page to an image
pix = page.get_pixmap(matrix=mat)
# Convert to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Save image
image_path = OUTPUT_DIR / f"page_{page_num + 1}.png"
img.save(image_path, "PNG")
pdf_document.close()
return image_path
except Exception as e:
print(f"Error generating image for page {page_num + 1}: {str(e)}")
return None
def extract_text_from_pdf(pdf_path, page_num):
"""
Extract text directly from a specific PDF page
"""
try:
# Open the PDF
pdf_document = fitz.open(pdf_path)
page = pdf_document[page_num]
# Extract text
text = page.get_text("text")
pdf_document.close()
return text.strip()
except Exception as e:
print(f"Error extracting text from page {page_num + 1}: {str(e)}")
return ""
def analyze_image(image_path):
"""
Analyze image content using BLIP model for image captioning
"""
try:
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Load and process image
image = Image.open(image_path).convert('RGB')
inputs = processor(image, return_tensors="pt")
# Generate caption
with torch.no_grad():
outputs = model.generate(**inputs)
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
except Exception as e:
print(f"Error during image analysis: {str(e)}")
return "Image content could not be analyzed."
def process_pdf(pdf_path, output_txt_path):
"""
Main function to process the PDF and generate output
"""
try:
# Open the PDF to get page count
pdf_document = fitz.open(pdf_path)
num_pages = len(pdf_document)
pdf_document.close()
if num_pages == 0:
print("The PDF is empty.")
return
# Prepare output file
with open(output_txt_path, 'w', encoding='utf-8') as f:
f.write(f"Analysis of {os.path.basename(pdf_path)}\n")
f.write("=" * 50 + "\n\n")
# Process each page
for page_num in range(num_pages):
print(f"Processing page {page_num + 1}...")
# Write page header
f.write(f"Page {page_num + 1}\n")
f.write("-" * 30 + "\n\n")
# Extract and write text
text = extract_text_from_pdf(pdf_path, page_num)
if text:
f.write("Extracted Text:\n")
f.write(text)
f.write("\n\n")
else:
f.write("No text could be extracted from this page.\n\n")
# Generate image for analysis and write description
image_path = generate_page_image(pdf_path, page_num)
if image_path:
description = analyze_image(image_path)
f.write("Image Description:\n")
f.write(f"{description}\n")
f.write("\n" + "=" * 50 + "\n\n")
else:
f.write("Image Description:\n")
f.write("Could not generate image for analysis.\n")
f.write("\n" + "=" * 50 + "\n\n")
print(f"Processing complete. Results saved to {output_txt_path}")
except Exception as e:
print(f"Error processing PDF: {str(e)}")
def process_uploaded_pdf(pdf_file):
if pdf_file is None:
return "Please upload a PDF file."
output_txt = OUTPUT_DIR / "analysis_results.txt"
process_pdf(pdf_file.name, output_txt)
# Read and return the results
with open(output_txt, 'r', encoding='utf-8') as f:
results = f.read()
return results
# Create Gradio interface
interface = gr.Interface(
fn=process_uploaded_pdf,
inputs=gr.File(label="Upload PDF"),
outputs=gr.Textbox(label="Analysis Results"),
title="PDF Analyzer",
description="Upload a PDF file to extract text directly and analyze images."
)
interface.launch()