Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,7 @@ import os
|
|
2 |
from pathlib import Path
|
3 |
import fitz # PyMuPDF for PDF handling
|
4 |
from PIL import Image
|
5 |
-
import pytesseract # For OCR
|
6 |
from transformers import BlipProcessor, BlipForConditionalGeneration # For image captioning
|
7 |
-
import io
|
8 |
import torch
|
9 |
import gradio as gr
|
10 |
|
@@ -12,56 +10,59 @@ import gradio as gr
|
|
12 |
OUTPUT_DIR = Path("outputs")
|
13 |
OUTPUT_DIR.mkdir(exist_ok=True)
|
14 |
|
15 |
-
def
|
16 |
"""
|
17 |
-
|
18 |
"""
|
19 |
try:
|
20 |
# Open the PDF
|
21 |
pdf_document = fitz.open(pdf_path)
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
for page_num in range(len(pdf_document)):
|
25 |
-
page = pdf_document[page_num]
|
26 |
-
|
27 |
-
# Get the page dimensions to determine appropriate resolution
|
28 |
-
rect = page.rect
|
29 |
-
width = rect.width
|
30 |
-
height = rect.height
|
31 |
-
|
32 |
-
# Calculate appropriate zoom factor to get good quality images
|
33 |
-
# Aim for approximately 2000 pixels on the longest side
|
34 |
-
zoom = 2000 / max(width, height)
|
35 |
-
|
36 |
-
# Create a transformation matrix
|
37 |
-
mat = fitz.Matrix(zoom, zoom)
|
38 |
-
|
39 |
-
# Render page to an image
|
40 |
-
pix = page.get_pixmap(matrix=mat)
|
41 |
-
|
42 |
-
# Convert to PIL Image
|
43 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
44 |
-
|
45 |
-
# Save image
|
46 |
-
image_path = OUTPUT_DIR / f"page_{page_num + 1}.png"
|
47 |
-
img.save(image_path, "PNG")
|
48 |
-
images.append((image_path, img))
|
49 |
-
|
50 |
pdf_document.close()
|
51 |
-
return
|
52 |
except Exception as e:
|
53 |
-
print(f"Error
|
54 |
-
return
|
55 |
|
56 |
-
def
|
57 |
"""
|
58 |
-
Extract text from
|
59 |
"""
|
60 |
try:
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return text.strip()
|
63 |
except Exception as e:
|
64 |
-
print(f"Error
|
65 |
return ""
|
66 |
|
67 |
def analyze_image(image_path):
|
@@ -91,43 +92,53 @@ def process_pdf(pdf_path, output_txt_path):
|
|
91 |
"""
|
92 |
Main function to process the PDF and generate output
|
93 |
"""
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
print("No images were generated from the PDF.")
|
100 |
-
return
|
101 |
-
|
102 |
-
# Prepare output file
|
103 |
-
with open(output_txt_path, 'w', encoding='utf-8') as f:
|
104 |
-
f.write(f"Analysis of {os.path.basename(pdf_path)}\n")
|
105 |
-
f.write("=" * 50 + "\n\n")
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
f.write("
|
114 |
-
|
115 |
-
# Extract and write text
|
116 |
-
text = extract_text_from_image(image)
|
117 |
-
if text:
|
118 |
-
f.write("Extracted Text:\n")
|
119 |
-
f.write(text)
|
120 |
-
f.write("\n\n")
|
121 |
-
else:
|
122 |
-
f.write("No text could be extracted from this page.\n\n")
|
123 |
|
124 |
-
#
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def process_uploaded_pdf(pdf_file):
|
133 |
if pdf_file is None:
|
@@ -148,7 +159,7 @@ interface = gr.Interface(
|
|
148 |
inputs=gr.File(label="Upload PDF"),
|
149 |
outputs=gr.Textbox(label="Analysis Results"),
|
150 |
title="PDF Analyzer",
|
151 |
-
description="Upload a PDF file to extract text and analyze images."
|
152 |
)
|
153 |
|
154 |
interface.launch()
|
|
|
2 |
from pathlib import Path
|
3 |
import fitz # PyMuPDF for PDF handling
|
4 |
from PIL import Image
|
|
|
5 |
from transformers import BlipProcessor, BlipForConditionalGeneration # For image captioning
|
|
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
|
|
|
10 |
OUTPUT_DIR = Path("outputs")
|
11 |
OUTPUT_DIR.mkdir(exist_ok=True)
|
12 |
|
13 |
+
def generate_page_image(pdf_path, page_num):
|
14 |
"""
|
15 |
+
Generate an image from a specific PDF page for analysis
|
16 |
"""
|
17 |
try:
|
18 |
# Open the PDF
|
19 |
pdf_document = fitz.open(pdf_path)
|
20 |
+
page = pdf_document[page_num]
|
21 |
+
|
22 |
+
# Get the page dimensions to determine appropriate resolution
|
23 |
+
rect = page.rect
|
24 |
+
width = rect.width
|
25 |
+
height = rect.height
|
26 |
+
|
27 |
+
# Calculate appropriate zoom factor to get good quality images
|
28 |
+
# Aim for approximately 2000 pixels on the longest side
|
29 |
+
zoom = 2000 / max(width, height)
|
30 |
+
|
31 |
+
# Create a transformation matrix
|
32 |
+
mat = fitz.Matrix(zoom, zoom)
|
33 |
+
|
34 |
+
# Render page to an image
|
35 |
+
pix = page.get_pixmap(matrix=mat)
|
36 |
+
|
37 |
+
# Convert to PIL Image
|
38 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
39 |
+
|
40 |
+
# Save image
|
41 |
+
image_path = OUTPUT_DIR / f"page_{page_num + 1}.png"
|
42 |
+
img.save(image_path, "PNG")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
pdf_document.close()
|
45 |
+
return image_path
|
46 |
except Exception as e:
|
47 |
+
print(f"Error generating image for page {page_num + 1}: {str(e)}")
|
48 |
+
return None
|
49 |
|
50 |
+
def extract_text_from_pdf(pdf_path, page_num):
|
51 |
"""
|
52 |
+
Extract text directly from a specific PDF page
|
53 |
"""
|
54 |
try:
|
55 |
+
# Open the PDF
|
56 |
+
pdf_document = fitz.open(pdf_path)
|
57 |
+
page = pdf_document[page_num]
|
58 |
+
|
59 |
+
# Extract text
|
60 |
+
text = page.get_text("text")
|
61 |
+
|
62 |
+
pdf_document.close()
|
63 |
return text.strip()
|
64 |
except Exception as e:
|
65 |
+
print(f"Error extracting text from page {page_num + 1}: {str(e)}")
|
66 |
return ""
|
67 |
|
68 |
def analyze_image(image_path):
|
|
|
92 |
"""
|
93 |
Main function to process the PDF and generate output
|
94 |
"""
|
95 |
+
try:
|
96 |
+
# Open the PDF to get page count
|
97 |
+
pdf_document = fitz.open(pdf_path)
|
98 |
+
num_pages = len(pdf_document)
|
99 |
+
pdf_document.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
if num_pages == 0:
|
102 |
+
print("The PDF is empty.")
|
103 |
+
return
|
104 |
+
|
105 |
+
# Prepare output file
|
106 |
+
with open(output_txt_path, 'w', encoding='utf-8') as f:
|
107 |
+
f.write(f"Analysis of {os.path.basename(pdf_path)}\n")
|
108 |
+
f.write("=" * 50 + "\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
# Process each page
|
111 |
+
for page_num in range(num_pages):
|
112 |
+
print(f"Processing page {page_num + 1}...")
|
113 |
+
|
114 |
+
# Write page header
|
115 |
+
f.write(f"Page {page_num + 1}\n")
|
116 |
+
f.write("-" * 30 + "\n\n")
|
117 |
+
|
118 |
+
# Extract and write text
|
119 |
+
text = extract_text_from_pdf(pdf_path, page_num)
|
120 |
+
if text:
|
121 |
+
f.write("Extracted Text:\n")
|
122 |
+
f.write(text)
|
123 |
+
f.write("\n\n")
|
124 |
+
else:
|
125 |
+
f.write("No text could be extracted from this page.\n\n")
|
126 |
+
|
127 |
+
# Generate image for analysis and write description
|
128 |
+
image_path = generate_page_image(pdf_path, page_num)
|
129 |
+
if image_path:
|
130 |
+
description = analyze_image(image_path)
|
131 |
+
f.write("Image Description:\n")
|
132 |
+
f.write(f"{description}\n")
|
133 |
+
f.write("\n" + "=" * 50 + "\n\n")
|
134 |
+
else:
|
135 |
+
f.write("Image Description:\n")
|
136 |
+
f.write("Could not generate image for analysis.\n")
|
137 |
+
f.write("\n" + "=" * 50 + "\n\n")
|
138 |
+
|
139 |
+
print(f"Processing complete. Results saved to {output_txt_path}")
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Error processing PDF: {str(e)}")
|
142 |
|
143 |
def process_uploaded_pdf(pdf_file):
|
144 |
if pdf_file is None:
|
|
|
159 |
inputs=gr.File(label="Upload PDF"),
|
160 |
outputs=gr.Textbox(label="Analysis Results"),
|
161 |
title="PDF Analyzer",
|
162 |
+
description="Upload a PDF file to extract text directly and analyze images."
|
163 |
)
|
164 |
|
165 |
interface.launch()
|