Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import traceback | |
import re | |
from typing import Dict, List, Tuple, Optional, Any | |
import numpy as np | |
class ObjectDescriptionError(Exception): | |
"""物件描述生成過程中的自定義異常""" | |
pass | |
class ObjectDescriptionGenerator: | |
""" | |
物件描述生成器 - 負責將檢測到的物件轉換為自然語言描述 | |
該類別處理物件相關的所有描述生成邏輯,包括重要物件的識別、 | |
空間位置描述、物件列表格式化以及描述文本的優化。 | |
""" | |
def __init__(self, | |
min_prominence_score: float = 0.1, | |
max_categories_to_return: int = 5, | |
max_total_objects: int = 7, | |
confidence_threshold_for_description: float = 0.25, | |
region_analyzer: Optional[Any] = None): | |
""" | |
初始化物件描述生成器 | |
Args: | |
min_prominence_score: 物件顯著性的最低分數閾值 | |
max_categories_to_return: 返回的物件類別最大數量 | |
max_total_objects: 返回的物件總數上限 | |
confidence_threshold_for_description: 用於描述的置信度閾值 | |
""" | |
self.logger = logging.getLogger(self.__class__.__name__) | |
self.min_prominence_score = min_prominence_score | |
self.max_categories_to_return = max_categories_to_return | |
self.max_total_objects = max_total_objects | |
self.confidence_threshold_for_description = confidence_threshold_for_description | |
self.region_analyzer = region_analyzer | |
self.logger.info("ObjectDescriptionGenerator initialized with prominence_score=%.2f, " | |
"max_categories=%d, max_objects=%d, confidence_threshold=%.2f", | |
min_prominence_score, max_categories_to_return, | |
max_total_objects, confidence_threshold_for_description) | |
def get_prominent_objects(self, detected_objects: List[Dict], | |
min_prominence_score: float = 0.5, | |
max_categories_to_return: Optional[int] = None) -> List[Dict]: | |
""" | |
獲取最重要的物件,基於置信度、大小和位置計算重要性評分 | |
Args: | |
detected_objects: 檢測到的物件列表 | |
min_prominence_score: 最小重要性分數閾值,範圍 0.0-1.0 | |
max_categories_to_return: 可選的最大返回類別數量限制 | |
Returns: | |
List[Dict]: 按重要性排序的物件列表 | |
""" | |
try: | |
if not detected_objects: | |
return [] | |
prominent_objects = [] | |
for obj in detected_objects: | |
# 計算重要性評分 | |
prominence_score = self._calculate_prominence_score(obj) | |
# 只保留超過閾值的物件 | |
if prominence_score >= min_prominence_score: | |
obj_copy = obj.copy() | |
obj_copy['prominence_score'] = prominence_score | |
prominent_objects.append(obj_copy) | |
# 按重要性評分排序(從高到低) | |
prominent_objects.sort(key=lambda x: x.get('prominence_score', 0), reverse=True) | |
# 如果指定了最大類別數量限制,進行過濾 | |
if max_categories_to_return is not None and max_categories_to_return > 0: | |
categories_seen = set() | |
filtered_objects = [] | |
for obj in prominent_objects: | |
class_name = obj.get("class_name", "unknown") | |
# 如果是新類別且未達到限制 | |
if class_name not in categories_seen: | |
if len(categories_seen) < max_categories_to_return: | |
categories_seen.add(class_name) | |
filtered_objects.append(obj) | |
else: | |
# 已見過的類別,直接添加 | |
filtered_objects.append(obj) | |
return filtered_objects | |
return prominent_objects | |
except Exception as e: | |
self.logger.error(f"Error calculating prominent objects: {str(e)}") | |
return [] | |
def set_region_analyzer(self, region_analyzer: Any) -> None: | |
""" | |
設置RegionAnalyzer,用於標準化空間描述生成 | |
Args: | |
region_analyzer: RegionAnalyzer實例 | |
""" | |
try: | |
self.region_analyzer = region_analyzer | |
self.logger.info("RegionAnalyzer instance set for ObjectDescriptionGenerator") | |
except Exception as e: | |
self.logger.warning(f"Error setting RegionAnalyzer: {str(e)}") | |
def _get_standardized_spatial_description(self, obj: Dict) -> str: | |
""" | |
使用RegionAnalyzer生成標準化空間描述的內部方法 | |
Args: | |
obj: 物件字典 | |
Returns: | |
str: 標準化空間描述,失敗時返回空字串 | |
""" | |
try: | |
if hasattr(self, 'region_analyzer') and self.region_analyzer: | |
region = obj.get("region", "") | |
object_type = obj.get("class_name", "") | |
if hasattr(self.region_analyzer, 'get_contextual_spatial_description'): | |
return self.region_analyzer.get_contextual_spatial_description(region, object_type) | |
elif hasattr(self.region_analyzer, 'get_spatial_description_phrase'): | |
return self.region_analyzer.get_spatial_description_phrase(region) | |
return "" | |
except Exception as e: | |
self.logger.warning(f"Error getting standardized spatial description: {str(e)}") | |
if object_type: | |
return f"visible in the scene" | |
return "present in the view" | |
def _calculate_prominence_score(self, obj: Dict) -> float: | |
""" | |
計算物件的重要性評分 | |
Args: | |
obj: 物件字典,包含檢測信息 | |
Returns: | |
float: 重要性評分 (0.0-1.0) | |
""" | |
try: | |
# 基礎置信度評分 (權重: 40%) | |
confidence = obj.get("confidence", 0.5) | |
confidence_score = confidence * 0.4 | |
# 大小評分 (權重: 30%) | |
normalized_area = obj.get("normalized_area", 0.1) | |
# 使用對數縮放避免過大物件主導評分 | |
size_score = min(np.log(normalized_area * 10 + 1) / np.log(11), 1.0) * 0.3 | |
# 位置評分 (權重: 20%) | |
# 中心區域的物件通常更重要 | |
center_x, center_y = obj.get("normalized_center", [0.5, 0.5]) | |
distance_from_center = np.sqrt((center_x - 0.5)**2 + (center_y - 0.5)**2) | |
position_score = (1 - min(distance_from_center * 2, 1.0)) * 0.2 | |
# 類別重要性評分 (權重: 10%) | |
class_importance = self._get_class_importance(obj.get("class_name", "unknown")) | |
class_score = class_importance * 0.1 | |
total_score = confidence_score + size_score + position_score + class_score | |
# 確保評分在有效範圍內 | |
return max(0.0, min(1.0, total_score)) | |
except Exception as e: | |
self.logger.warning(f"Error calculating prominence score for object: {str(e)}") | |
return 0.5 # 返回中等評分作為備用 | |
def _get_class_importance(self, class_name: str) -> float: | |
""" | |
根據物件類別返回重要性係數 | |
Args: | |
class_name: 物件類別名稱 | |
Returns: | |
float: 類別重要性係數 (0.0-1.0) | |
""" | |
# 高重要性物件(人、車輛、建築) | |
high_importance = ["person", "car", "truck", "bus", "motorcycle", "bicycle", "building"] | |
# 中等重要性物件(家具、電器) | |
medium_importance = ["chair", "couch", "tv", "laptop", "refrigerator", "dining table", "bed"] | |
# 低重要性物件(小物品、配件) | |
low_importance = ["handbag", "backpack", "umbrella", "cell phone", "remote", "mouse"] | |
class_name_lower = class_name.lower() | |
if any(item in class_name_lower for item in high_importance): | |
return 1.0 | |
elif any(item in class_name_lower for item in medium_importance): | |
return 0.7 | |
elif any(item in class_name_lower for item in low_importance): | |
return 0.4 | |
else: | |
return 0.6 # 預設中等重要性 | |
def format_object_list_for_description(self, | |
objects: List[Dict], | |
use_indefinite_article_for_one: bool = False, | |
count_threshold_for_generalization: int = -1, | |
max_types_to_list: int = 5) -> str: | |
""" | |
將物件列表格式化為人類可讀的字符串,包含計數信息 | |
Args: | |
objects: 物件字典列表,每個應包含 'class_name' | |
use_indefinite_article_for_one: 單個物件是否使用 "a/an",否則使用 "one" | |
count_threshold_for_generalization: 超過此計數時使用通用術語,-1表示精確計數 | |
max_types_to_list: 列表中包含的不同物件類型最大數量 | |
Returns: | |
str: 格式化的物件描述字符串 | |
""" | |
try: | |
if not objects: | |
return "no specific objects clearly identified" | |
counts: Dict[str, int] = {} | |
for obj in objects: | |
name = obj.get("class_name", "unknown object") | |
if name == "unknown object" or not name: | |
continue | |
counts[name] = counts.get(name, 0) + 1 | |
if not counts: | |
return "no specific objects clearly identified" | |
descriptions = [] | |
# 按計數降序然後按名稱升序排序,限制物件類型數量 | |
sorted_counts = sorted(counts.items(), key=lambda item: (-item[1], item[0]))[:max_types_to_list] | |
for name, count in sorted_counts: | |
if count == 1: | |
if use_indefinite_article_for_one: | |
if name[0].lower() in 'aeiou': | |
descriptions.append(f"an {name}") | |
else: | |
descriptions.append(f"a {name}") | |
else: | |
descriptions.append(f"one {name}") | |
else: | |
# 處理複數形式 | |
plural_name = name | |
if name.endswith("y") and not name.lower().endswith(("ay", "ey", "iy", "oy", "uy")): | |
plural_name = name[:-1] + "ies" | |
elif name.endswith(("s", "sh", "ch", "x", "z")): | |
plural_name = name + "es" | |
elif not name.endswith("s"): | |
plural_name = name + "s" | |
if count_threshold_for_generalization != -1 and count > count_threshold_for_generalization: | |
if count <= count_threshold_for_generalization + 3: | |
descriptions.append(f"several {plural_name}") | |
else: | |
descriptions.append(f"many {plural_name}") | |
else: | |
descriptions.append(f"{count} {plural_name}") | |
if not descriptions: | |
return "no specific objects clearly identified" | |
if len(descriptions) == 1: | |
return descriptions[0] | |
elif len(descriptions) == 2: | |
return f"{descriptions[0]} and {descriptions[1]}" | |
else: | |
# 使用牛津逗號格式 | |
return ", ".join(descriptions[:-1]) + f", and {descriptions[-1]}" | |
except Exception as e: | |
self.logger.warning(f"Error formatting object list: {str(e)}") | |
return "various objects" | |
def get_spatial_description(self, obj: Dict, image_width: Optional[int] = None, | |
image_height: Optional[int] = None, | |
region_analyzer: Optional[Any] = None) -> str: | |
""" | |
為物件生成空間位置描述 | |
Args: | |
obj: 物件字典 | |
image_width: 可選的圖像寬度 | |
image_height: 可選的圖像高度 | |
region_analyzer: 可選的RegionAnalyzer實例,用於生成標準化描述 | |
Returns: | |
str: 空間描述字符串,空值region時返回空字串 | |
""" | |
try: | |
region = obj.get("region") or "" | |
# 處理空值或無效region,直接返回空字串避免不完整描述 | |
if not region.strip() or region == "unknown": | |
# 根據物件類型提供合適的預設位置描述 | |
if object_type and any(vehicle in object_type.lower() for vehicle in ["car", "truck", "bus"]): | |
return "positioned in the scene" | |
elif object_type and "person" in object_type.lower(): | |
return "present in the area" | |
else: | |
return "located in the scene" | |
# 如果提供了RegionAnalyzer實例,使用其標準化方法 | |
if region_analyzer and hasattr(region_analyzer, 'get_spatial_description_phrase'): | |
object_type = obj.get("class_name", "") | |
if hasattr(region_analyzer, 'get_contextual_spatial_description'): | |
spatial_desc = region_analyzer.get_contextual_spatial_description(region, object_type) | |
else: | |
spatial_desc = region_analyzer.get_spatial_description_phrase(region) | |
if spatial_desc: | |
return spatial_desc | |
# 備用邏輯:使用改進的內建映射 | |
clean_region = region.replace('_', ' ').strip().lower() | |
region_map = { | |
"top left": "in the upper left area", | |
"top center": "in the upper area", | |
"top right": "in the upper right area", | |
"middle left": "on the left side", | |
"middle center": "in the center", | |
"center": "in the center", | |
"middle right": "on the right side", | |
"bottom left": "in the lower left area", | |
"bottom center": "in the lower area", | |
"bottom right": "in the lower right area" | |
} | |
# 直接映射匹配 | |
if clean_region in region_map: | |
return region_map[clean_region] | |
# 模糊匹配處理 | |
if "top" in clean_region and "left" in clean_region: | |
return "in the upper left area" | |
elif "top" in clean_region and "right" in clean_region: | |
return "in the upper right area" | |
elif "bottom" in clean_region and "left" in clean_region: | |
return "in the lower left area" | |
elif "bottom" in clean_region and "right" in clean_region: | |
return "in the lower right area" | |
elif "top" in clean_region: | |
return "in the upper area" | |
elif "bottom" in clean_region: | |
return "in the lower area" | |
elif "left" in clean_region: | |
return "on the left side" | |
elif "right" in clean_region: | |
return "on the right side" | |
elif "center" in clean_region or "middle" in clean_region: | |
return "in the center" | |
# 如果region無法識別,使用normalized_center作為最後備用 | |
norm_center = obj.get("normalized_center") | |
if norm_center and image_width and image_height: | |
x_norm, y_norm = norm_center | |
h_pos = "left" if x_norm < 0.4 else "right" if x_norm > 0.6 else "center" | |
v_pos = "upper" if y_norm < 0.4 else "lower" if y_norm > 0.6 else "center" | |
if h_pos == "center" and v_pos == "center": | |
return "in the center" | |
return f"in the {v_pos} {h_pos} area" | |
# 如果所有方法都失敗,返回空字串 | |
return "" | |
except Exception as e: | |
self.logger.warning(f"Error generating spatial description: {str(e)}") | |
return "" | |
def optimize_object_description(self, description: str) -> str: | |
""" | |
優化物件描述,避免重複列舉相同物件 | |
Args: | |
description: 原始描述文本 | |
Returns: | |
str: 優化後的描述文本 | |
""" | |
try: | |
import re | |
# 處理床鋪重複描述 | |
if "bed in the room" in description: | |
description = description.replace("a bed in the room", "a bed") | |
# 處理重複的物件列表 | |
object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description) | |
for obj_list in object_lists: | |
# 計算每個物件出現次數 | |
items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list) | |
item_counts = {} | |
for item in items: | |
item = item.strip() | |
if item and item not in ["and", "with"]: | |
if item not in item_counts: | |
item_counts[item] = 0 | |
item_counts[item] += 1 | |
# 生成優化後的物件列表 | |
if item_counts: | |
new_items = [] | |
for item, count in item_counts.items(): | |
if count > 1: | |
new_items.append(f"{count} {item}s") | |
else: | |
new_items.append(item) | |
# 格式化新列表 | |
if len(new_items) == 1: | |
new_list = new_items[0] | |
elif len(new_items) == 2: | |
new_list = f"{new_items[0]} and {new_items[1]}" | |
else: | |
new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}" | |
# 替換原始列表 | |
description = description.replace(obj_list, new_list) | |
return description | |
except Exception as e: | |
self.logger.warning(f"Error optimizing object description: {str(e)}") | |
return description | |
def generate_dynamic_everyday_description(self, | |
detected_objects: List[Dict], | |
lighting_info: Optional[Dict] = None, | |
viewpoint: str = "eye_level", | |
spatial_analysis: Optional[Dict] = None, | |
image_dimensions: Optional[Tuple[int, int]] = None, | |
places365_info: Optional[Dict] = None, | |
object_statistics: Optional[Dict] = None) -> str: | |
""" | |
為日常場景動態生成描述,基於所有相關的檢測物件、計數和上下文 | |
Args: | |
detected_objects: 檢測到的物件列表 | |
lighting_info: 照明信息 | |
viewpoint: 視角類型 | |
spatial_analysis: 空間分析結果 | |
image_dimensions: 圖像尺寸 | |
places365_info: Places365場景分類信息 | |
object_statistics: 物件統計信息 | |
Returns: | |
str: 動態生成的場景描述 | |
""" | |
try: | |
description_segments = [] | |
image_width, image_height = image_dimensions if image_dimensions else (None, None) | |
self.logger.debug(f"Generating dynamic description for {len(detected_objects)} objects, " | |
f"viewpoint: {viewpoint}, lighting: {lighting_info is not None}") | |
# 1. 整體氛圍(照明和視角) | |
ambiance_parts = [] | |
if lighting_info: | |
time_of_day = lighting_info.get("time_of_day", "unknown lighting") | |
is_indoor = lighting_info.get("is_indoor") | |
ambiance_statement = "This is" | |
if is_indoor is True: | |
ambiance_statement += " an indoor scene" | |
elif is_indoor is False: | |
ambiance_statement += " an outdoor scene" | |
else: | |
ambiance_statement += " a scene" | |
# remove underline | |
readable_lighting = f"with {time_of_day.replace('_', ' ')} lighting conditions" | |
ambiance_statement += f", likely {readable_lighting}." | |
ambiance_parts.append(ambiance_statement) | |
if viewpoint and viewpoint != "eye_level": | |
if not ambiance_parts: | |
ambiance_parts.append(f"From {viewpoint.replace('_', ' ')}, the general layout of the scene is observed.") | |
else: | |
ambiance_parts[-1] = ambiance_parts[-1].rstrip('.') + f", viewed from {viewpoint.replace('_', ' ')}." | |
if ambiance_parts: | |
description_segments.append(" ".join(ambiance_parts)) | |
# 2. 描述所有檢測到的物件,按類別分組,使用準確計數和位置 | |
if not detected_objects: | |
if not description_segments: | |
description_segments.append("A general scene is visible, but no specific objects were clearly identified.") | |
else: | |
description_segments.append("Within this setting, no specific objects were clearly identified.") | |
else: | |
objects_by_class: Dict[str, List[Dict]] = {} | |
# 使用置信度過濾 | |
confident_objects = [obj for obj in detected_objects | |
if obj.get("confidence", 0) >= self.confidence_threshold_for_description] | |
print(f"DEBUG: After confidence filtering (threshold={self.confidence_threshold_for_description}):") | |
for class_name in ["car", "traffic light", "person", "handbag"]: | |
class_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name] | |
print(f"DEBUG: {class_name}: {len(class_objects)} confident objects") | |
if not confident_objects: | |
no_confident_obj_msg = "While some elements might be present, no objects were identified with sufficient confidence for a detailed description." | |
if not description_segments: | |
description_segments.append(no_confident_obj_msg) | |
else: | |
description_segments.append(no_confident_obj_msg.lower().capitalize()) | |
else: | |
if object_statistics: | |
# 使用預計算的統計信息,採用動態的信心度 | |
for class_name, stats in object_statistics.items(): | |
count = stats.get("count", 0) | |
avg_confidence = stats.get("avg_confidence", 0) | |
# 動態調整置信度閾值 | |
dynamic_threshold = self.confidence_threshold_for_description | |
if class_name in ["potted plant", "vase", "clock", "book"]: | |
dynamic_threshold = max(0.15, self.confidence_threshold_for_description * 0.6) | |
elif count >= 3: | |
dynamic_threshold = max(0.2, self.confidence_threshold_for_description * 0.8) | |
if count > 0 and avg_confidence >= dynamic_threshold: | |
matching_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name] | |
if not matching_objects: | |
matching_objects = [obj for obj in detected_objects | |
if obj.get("class_name") == class_name and obj.get("confidence", 0) >= dynamic_threshold] | |
if matching_objects: | |
actual_count = min(stats["count"], len(matching_objects)) | |
objects_by_class[class_name] = matching_objects[:actual_count] | |
else: | |
# 備用邏輯,同樣使用動態閾值 | |
for obj in confident_objects: | |
name = obj.get("class_name", "unknown object") | |
if name == "unknown object" or not name: | |
continue | |
if name not in objects_by_class: | |
objects_by_class[name] = [] | |
objects_by_class[name].append(obj) | |
print(f"DEBUG: Before spatial deduplication:") | |
for class_name in ["car", "traffic light", "person", "handbag"]: | |
if class_name in objects_by_class: | |
print(f"DEBUG: {class_name}: {len(objects_by_class[class_name])} objects before dedup") | |
if not objects_by_class: | |
description_segments.append("No common objects were confidently identified for detailed description.") | |
else: | |
# 物件組排序函數 | |
def sort_key_object_groups(item_tuple: Tuple[str, List[Dict]]): | |
class_name_key, obj_group_list = item_tuple | |
priority = 3 | |
count = len(obj_group_list) | |
# 確保類別名稱已標準化 | |
normalized_class_name = self._normalize_object_class_name(class_name_key) | |
# 動態優先級 | |
if normalized_class_name == "person": | |
priority = 0 | |
elif normalized_class_name in ["dining table", "chair", "sofa", "bed"]: | |
priority = 1 | |
elif normalized_class_name in ["car", "bus", "truck", "traffic light"]: | |
priority = 2 | |
elif count >= 3: | |
priority = max(1, priority - 1) | |
elif normalized_class_name in ["potted plant", "vase", "clock", "book"] and count >= 2: | |
priority = 2 | |
avg_area = sum(o.get("normalized_area", 0.0) for o in obj_group_list) / len(obj_group_list) if obj_group_list else 0 | |
quantity_bonus = min(count / 5.0, 1.0) | |
return (priority, -len(obj_group_list), -avg_area, -quantity_bonus) | |
# remove duplicate | |
deduplicated_objects_by_class = {} | |
processed_positions = [] | |
for class_name, group_of_objects in objects_by_class.items(): | |
unique_objects = [] | |
for obj in group_of_objects: | |
obj_position = obj.get("normalized_center", [0.5, 0.5]) | |
is_duplicate = False | |
for processed_pos in processed_positions: | |
position_distance = abs(obj_position[0] - processed_pos[0]) + abs(obj_position[1] - processed_pos[1]) | |
if position_distance < 0.15: | |
is_duplicate = True | |
break | |
if not is_duplicate: | |
unique_objects.append(obj) | |
processed_positions.append(obj_position) | |
if unique_objects: | |
deduplicated_objects_by_class[class_name] = unique_objects | |
objects_by_class = deduplicated_objects_by_class | |
print(f"DEBUG: After spatial deduplication:") | |
for class_name in ["car", "traffic light", "person", "handbag"]: | |
if class_name in objects_by_class: | |
print(f"DEBUG: {class_name}: {len(objects_by_class[class_name])} objects after dedup") | |
sorted_object_groups = sorted(objects_by_class.items(), key=sort_key_object_groups) | |
object_clauses = [] | |
for class_name, group_of_objects in sorted_object_groups: | |
count = len(group_of_objects) | |
if class_name in ["car", "traffic light", "person", "handbag"]: | |
print(f"DEBUG: Final count for {class_name}: {count}") | |
if count == 0: | |
continue | |
# 標準化class name | |
normalized_class_name = self._normalize_object_class_name(class_name) | |
# 使用統計信息確保準確的數量描述 | |
if object_statistics and class_name in object_statistics: | |
actual_count = object_statistics[class_name]["count"] | |
formatted_name_with_exact_count = self._format_object_count_description( | |
normalized_class_name, | |
actual_count, | |
scene_type=scene_type | |
) | |
else: | |
formatted_name_with_exact_count = self._format_object_count_description( | |
normalized_class_name, | |
count, | |
scene_type=scene_type | |
) | |
if formatted_name_with_exact_count == "no specific objects clearly identified" or not formatted_name_with_exact_count: | |
continue | |
# 確定群組的集體位置 | |
location_description_suffix = "" | |
if count == 1: | |
spatial_desc = self.get_spatial_description(group_of_objects[0], image_width, image_height, self.region_analyzer) | |
if spatial_desc: | |
location_description_suffix = f"is {spatial_desc}" | |
else: | |
distinct_regions = sorted(list(set(obj.get("region", "") for obj in group_of_objects if obj.get("region")))) | |
valid_regions = [r for r in distinct_regions if r and r != "unknown" and r.strip()] | |
if not valid_regions: | |
location_description_suffix = "is positioned in the scene" | |
elif len(valid_regions) == 1: | |
spatial_desc = self.get_spatial_description_phrase(valid_regions[0]) | |
location_description_suffix = f"is primarily {spatial_desc}" if spatial_desc else "is positioned in the scene" | |
elif len(valid_regions) == 2: | |
clean_region1 = valid_regions[0].replace('_', ' ') | |
clean_region2 = valid_regions[1].replace('_', ' ') | |
location_description_suffix = f"is mainly across the {clean_region1} and {clean_region2} areas" | |
else: | |
location_description_suffix = "is distributed in various parts of the scene" | |
else: | |
distinct_regions = sorted(list(set(obj.get("region", "") for obj in group_of_objects if obj.get("region")))) | |
valid_regions = [r for r in distinct_regions if r and r != "unknown" and r.strip()] | |
if not valid_regions: | |
location_description_suffix = "are visible in the scene" | |
elif len(valid_regions) == 1: | |
clean_region = valid_regions[0].replace('_', ' ') | |
location_description_suffix = f"are primarily in the {clean_region} area" | |
elif len(valid_regions) == 2: | |
clean_region1 = valid_regions[0].replace('_', ' ') | |
clean_region2 = valid_regions[1].replace('_', ' ') | |
location_description_suffix = f"are mainly across the {clean_region1} and {clean_region2} areas" | |
else: | |
location_description_suffix = "are distributed in various parts of the scene" | |
# 首字母大寫 | |
formatted_name_capitalized = formatted_name_with_exact_count[0].upper() + formatted_name_with_exact_count[1:] | |
object_clauses.append(f"{formatted_name_capitalized} {location_description_suffix}") | |
if object_clauses: | |
if not description_segments: | |
if object_clauses: | |
first_clause = object_clauses.pop(0) | |
description_segments.append(first_clause + ".") | |
else: | |
if object_clauses: | |
description_segments.append("The scene features:") | |
if object_clauses: | |
joined_object_clauses = ". ".join(object_clauses) | |
if joined_object_clauses and not joined_object_clauses.endswith("."): | |
joined_object_clauses += "." | |
description_segments.append(joined_object_clauses) | |
elif not description_segments: | |
return "The image depicts a scene, but specific objects could not be described with confidence or detail." | |
# 最終組裝和格式化 | |
raw_description = "" | |
for i, segment in enumerate(filter(None, description_segments)): | |
segment = segment.strip() | |
if not segment: | |
continue | |
if not raw_description: | |
raw_description = segment | |
else: | |
if not raw_description.endswith(('.', '!', '?')): | |
raw_description += "." | |
raw_description += " " + (segment[0].upper() + segment[1:] if len(segment) > 1 else segment.upper()) | |
if raw_description and not raw_description.endswith(('.', '!', '?')): | |
raw_description += "." | |
# 移除重複性和不適當的描述詞彙 | |
raw_description = self._remove_repetitive_descriptors(raw_description) | |
if not raw_description or len(raw_description.strip()) < 20: | |
if 'confident_objects' in locals() and confident_objects: | |
return "The scene contains several detected objects, but a detailed textual description could not be fully constructed." | |
else: | |
return "A general scene is depicted with no objects identified with high confidence." | |
return raw_description | |
except Exception as e: | |
error_msg = f"Error generating dynamic everyday description: {str(e)}" | |
self.logger.error(f"{error_msg}\n{traceback.format_exc()}") | |
raise ObjectDescriptionError(error_msg) from e | |
def _remove_repetitive_descriptors(self, description: str) -> str: | |
""" | |
移除描述中的重複性和不適當的描述詞彙,特別是 "identical" 等詞彙 | |
Args: | |
description: 原始描述文本 | |
Returns: | |
str: 清理後的描述文本 | |
""" | |
try: | |
import re | |
# 定義需要移除或替換的模式 | |
cleanup_patterns = [ | |
# 移除 "identical" 描述模式 | |
(r'\b(\d+)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'), | |
(r'\b(two|three|four|five|six|seven|eight|nine|ten|eleven|twelve)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'), | |
(r'\bidentical\s+([a-zA-Z\s]+)', r'\1'), | |
# 改善 "comprehensive arrangement" 等過於技術性的表達 | |
(r'\bcomprehensive arrangement of\b', 'arrangement of'), | |
(r'\bcomprehensive view featuring\b', 'scene featuring'), | |
(r'\bcomprehensive display of\b', 'display of'), | |
# 簡化過度描述性的短語 | |
(r'\bpositioning around\s+(\d+)\s+identical\b', r'positioning around \1'), | |
(r'\barranged around\s+(\d+)\s+identical\b', r'arranged around \1'), | |
] | |
processed_description = description | |
for pattern, replacement in cleanup_patterns: | |
processed_description = re.sub(pattern, replacement, processed_description, flags=re.IGNORECASE) | |
# 進一步清理可能的多餘空格 | |
processed_description = re.sub(r'\s+', ' ', processed_description).strip() | |
self.logger.debug(f"Cleaned description: removed repetitive descriptors") | |
return processed_description | |
except Exception as e: | |
self.logger.warning(f"Error removing repetitive descriptors: {str(e)}") | |
return description | |
def _format_object_count_description(self, class_name: str, count: int, | |
scene_type: Optional[str] = None, | |
detected_objects: Optional[List[Dict]] = None, | |
avg_confidence: float = 0.0) -> str: | |
""" | |
格式化物件數量描述的核心方法,整合空間排列、材質推斷和場景語境 | |
這個方法是整個物件描述系統的核心,它將多個子功能整合在一起: | |
1. 數字到文字的轉換(避免阿拉伯數字) | |
2. 基於場景的材質推斷 | |
3. 空間排列模式的描述 | |
4. 語境化的物件描述 | |
Args: | |
class_name: 標準化後的類別名稱 | |
count: 物件數量 | |
scene_type: 場景類型,用於語境化描述 | |
detected_objects: 該類型的所有檢測物件,用於空間分析 | |
avg_confidence: 平均檢測置信度,影響材質推斷的可信度 | |
Returns: | |
str: 完整的格式化數量描述 | |
""" | |
try: | |
if count <= 0: | |
return "" | |
# 獲取基礎的複數形式 | |
plural_form = self._get_plural_form(class_name) | |
# 單數情況的處理 | |
if count == 1: | |
return self._format_single_object_description(class_name, scene_type, | |
detected_objects, avg_confidence) | |
# 複數情況的處理 | |
return self._format_multiple_objects_description(class_name, count, plural_form, | |
scene_type, detected_objects, avg_confidence) | |
except Exception as e: | |
self.logger.warning(f"Error formatting object count for '{class_name}': {str(e)}") | |
return f"{count} {class_name}s" if count > 1 else class_name | |
def _format_single_object_description(self, class_name: str, scene_type: Optional[str], | |
detected_objects: Optional[List[Dict]], | |
avg_confidence: float) -> str: | |
""" | |
處理單個物件的描述生成 | |
對於單個物件,我們重點在於通過材質推斷和位置描述來豐富描述內容, | |
避免簡單的 "a chair" 這樣的描述,而是生成 "a wooden dining chair" 這樣的表達 | |
Args: | |
class_name: 物件類別名稱 | |
scene_type: 場景類型 | |
detected_objects: 檢測物件列表 | |
avg_confidence: 平均置信度 | |
Returns: | |
str: 單個物件的完整描述 | |
""" | |
article = "an" if class_name[0].lower() in 'aeiou' else "a" | |
# 獲取材質描述符 | |
material_descriptor = self._get_material_descriptor(class_name, scene_type, avg_confidence) | |
# 獲取位置或特徵描述符 | |
feature_descriptor = self._get_single_object_feature(class_name, scene_type, detected_objects) | |
# 組合描述 | |
descriptors = [] | |
if material_descriptor: | |
descriptors.append(material_descriptor) | |
if feature_descriptor: | |
descriptors.append(feature_descriptor) | |
if descriptors: | |
return f"{article} {' '.join(descriptors)} {class_name}" | |
else: | |
return f"{article} {class_name}" | |
def _format_multiple_objects_description(self, class_name: str, count: int, plural_form: str, | |
scene_type: Optional[str], detected_objects: Optional[List[Dict]], | |
avg_confidence: float) -> str: | |
""" | |
處理多個物件的描述生成 | |
對於多個物件,我們的重點是: | |
1. 將數字轉換為文字表達 | |
2. 分析空間排列模式 | |
3. 添加適當的材質或功能描述 | |
4. 生成自然流暢的描述 | |
Args: | |
class_name: 物件類別名稱 | |
count: 物件數量 | |
plural_form: 複數形式 | |
scene_type: 場景類型 | |
detected_objects: 檢測物件列表 | |
avg_confidence: 平均置信度 | |
Returns: | |
str: 多個物件的完整描述 | |
""" | |
# 數字到文字的轉換映射 | |
number_words = { | |
2: "two", 3: "three", 4: "four", 5: "five", 6: "six", | |
7: "seven", 8: "eight", 9: "nine", 10: "ten", | |
11: "eleven", 12: "twelve" | |
} | |
# 確定基礎數量表達 | |
if count in number_words: | |
count_expression = number_words[count] | |
elif count <= 20: | |
count_expression = "several" | |
else: | |
count_expression = "numerous" | |
# 獲取材質或功能描述符 | |
material_descriptor = self._get_material_descriptor(class_name, scene_type, avg_confidence) | |
# 獲取空間排列描述 | |
spatial_descriptor = self._get_spatial_arrangement_descriptor(class_name, scene_type, | |
detected_objects, count) | |
# 組合最終描述 | |
descriptors = [] | |
if material_descriptor: | |
descriptors.append(material_descriptor) | |
# 構建基礎描述 | |
base_description = f"{count_expression} {' '.join(descriptors)} {plural_form}".strip() | |
# 添加空間排列信息 | |
if spatial_descriptor: | |
return f"{base_description} {spatial_descriptor}" | |
else: | |
return base_description | |
def _get_material_descriptor(self, class_name: str, scene_type: Optional[str], | |
avg_confidence: float) -> Optional[str]: | |
""" | |
基於場景語境和置信度進行材質推斷 | |
這個方法實現了智能的材質推斷,它不依賴複雜的圖像分析, | |
而是基於常識和場景邏輯來推斷最可能的材質描述 | |
Args: | |
class_name: 物件類別名稱 | |
scene_type: 場景類型 | |
avg_confidence: 檢測置信度,影響推斷的保守程度 | |
Returns: | |
Optional[str]: 材質描述符,如果無法推斷則返回None | |
""" | |
# 只有在置信度足夠高時才進行材質推斷 | |
if avg_confidence < 0.5: | |
return None | |
# 餐廳和用餐相關場景 | |
if scene_type and scene_type in ["dining_area", "restaurant", "upscale_dining", "cafe"]: | |
material_mapping = { | |
"chair": "wooden" if avg_confidence > 0.7 else None, | |
"dining table": "wooden", | |
"couch": "upholstered", | |
"vase": "decorative" | |
} | |
return material_mapping.get(class_name) | |
# 辦公場景 | |
elif scene_type and scene_type in ["office_workspace", "meeting_room", "conference_room"]: | |
material_mapping = { | |
"chair": "office", | |
"dining table": "conference", # 在辦公環境中,餐桌通常是會議桌 | |
"laptop": "modern", | |
"book": "reference" | |
} | |
return material_mapping.get(class_name) | |
# 客廳場景 | |
elif scene_type and scene_type in ["living_room"]: | |
material_mapping = { | |
"couch": "comfortable", | |
"chair": "accent", | |
"tv": "large", | |
"vase": "decorative" | |
} | |
return material_mapping.get(class_name) | |
# 室外場景 | |
elif scene_type and scene_type in ["city_street", "park_area", "parking_lot"]: | |
material_mapping = { | |
"car": "parked", | |
"person": "walking", | |
"bicycle": "stationed" | |
} | |
return material_mapping.get(class_name) | |
# 如果沒有特定的場景映射,返回通用描述符 | |
generic_mapping = { | |
"chair": "comfortable", | |
"dining table": "sturdy", | |
"car": "parked", | |
"person": "present" | |
} | |
return generic_mapping.get(class_name) | |
def _get_spatial_arrangement_descriptor(self, class_name: str, scene_type: Optional[str], | |
detected_objects: Optional[List[Dict]], | |
count: int) -> Optional[str]: | |
""" | |
分析物件的空間排列模式並生成相應描述 | |
這個方法通過分析物件的位置分布來判斷排列模式, | |
然後根據物件類型和場景生成適當的空間描述 | |
Args: | |
class_name: 物件類別名稱 | |
scene_type: 場景類型 | |
detected_objects: 該類型的所有檢測物件 | |
count: 物件數量 | |
Returns: | |
Optional[str]: 空間排列描述,如果無法分析則返回None | |
""" | |
if not detected_objects or len(detected_objects) < 2: | |
return None | |
try: | |
# 提取物件的標準化位置 | |
positions = [] | |
for obj in detected_objects: | |
center = obj.get("normalized_center", [0.5, 0.5]) | |
if isinstance(center, (list, tuple)) and len(center) >= 2: | |
positions.append(center) | |
if len(positions) < 2: | |
return None | |
# 分析排列模式 | |
arrangement_pattern = self._analyze_arrangement_pattern(positions) | |
# 根據物件類型和場景生成描述 | |
return self._generate_arrangement_description(class_name, scene_type, | |
arrangement_pattern, count) | |
except Exception as e: | |
self.logger.warning(f"Error analyzing spatial arrangement: {str(e)}") | |
return None | |
def _analyze_arrangement_pattern(self, positions: List[List[float]]) -> str: | |
""" | |
分析位置點的排列模式 | |
這個方法使用簡單的幾何分析來判斷物件的排列類型, | |
幫助我們理解物件在空間中的組織方式 | |
Args: | |
positions: 標準化的位置座標列表 | |
Returns: | |
str: 排列模式類型(linear, clustered, scattered, circular等) | |
""" | |
import numpy as np | |
if len(positions) < 2: | |
return "single" | |
# 轉換為numpy陣列便於計算 | |
pos_array = np.array(positions) | |
# 計算位置的分布特徵 | |
x_coords = pos_array[:, 0] | |
y_coords = pos_array[:, 1] | |
# 分析x和y方向的變異程度 | |
x_variance = np.var(x_coords) | |
y_variance = np.var(y_coords) | |
# 計算物件間的平均距離 | |
distances = [] | |
for i in range(len(positions)): | |
for j in range(i + 1, len(positions)): | |
dist = np.sqrt((positions[i][0] - positions[j][0])**2 + | |
(positions[i][1] - positions[j][1])**2) | |
distances.append(dist) | |
avg_distance = np.mean(distances) if distances else 0 | |
distance_variance = np.var(distances) if distances else 0 | |
# 判斷排列模式 | |
if len(positions) >= 4 and self._is_circular_pattern(positions): | |
return "circular" | |
elif x_variance < 0.05 or y_variance < 0.05: # 一個方向變異很小 | |
return "linear" | |
elif avg_distance < 0.3 and distance_variance < 0.02: # 物件聚集且距離相近 | |
return "clustered" | |
elif avg_distance > 0.6: # 物件分散 | |
return "scattered" | |
elif distance_variance < 0.03: # 距離一致,可能是規則排列 | |
return "regular" | |
else: | |
return "distributed" | |
def _is_circular_pattern(self, positions: List[List[float]]) -> bool: | |
""" | |
檢查位置是否形成圓形或環形排列 | |
Args: | |
positions: 位置座標列表 | |
Returns: | |
bool: 是否為圓形排列 | |
""" | |
import numpy as np | |
if len(positions) < 4: | |
return False | |
try: | |
pos_array = np.array(positions) | |
# 計算中心點 | |
center_x = np.mean(pos_array[:, 0]) | |
center_y = np.mean(pos_array[:, 1]) | |
# 計算每個點到中心的距離 | |
distances_to_center = [] | |
for pos in positions: | |
dist = np.sqrt((pos[0] - center_x)**2 + (pos[1] - center_y)**2) | |
distances_to_center.append(dist) | |
# 如果所有距離都相近,可能是圓形排列 | |
distance_variance = np.var(distances_to_center) | |
return distance_variance < 0.05 and np.mean(distances_to_center) > 0.2 | |
except: | |
return False | |
def _generate_arrangement_description(self, class_name: str, scene_type: Optional[str], | |
arrangement_pattern: str, count: int) -> Optional[str]: | |
""" | |
根據物件類型、場景和排列模式生成空間描述 | |
這個方法將抽象的排列模式轉換為自然語言描述, | |
並根據具體的物件類型和場景語境進行定制 | |
Args: | |
class_name: 物件類別名稱 | |
scene_type: 場景類型 | |
arrangement_pattern: 排列模式 | |
count: 物件數量 | |
Returns: | |
Optional[str]: 生成的空間排列描述 | |
""" | |
# 基於物件類型的描述模板 | |
arrangement_templates = { | |
"chair": { | |
"linear": "arranged in a row", | |
"clustered": "grouped together for conversation", | |
"circular": "arranged around the table", | |
"scattered": "positioned throughout the space", | |
"regular": "evenly spaced", | |
"distributed": "thoughtfully positioned" | |
}, | |
"dining table": { | |
"linear": "aligned to create a unified dining space", | |
"clustered": "grouped to form intimate dining areas", | |
"scattered": "distributed to optimize space flow", | |
"regular": "systematically positioned", | |
"distributed": "strategically placed" | |
}, | |
"car": { | |
"linear": "parked in sequence", | |
"clustered": "grouped in the parking area", | |
"scattered": "distributed throughout the lot", | |
"regular": "neatly parked", | |
"distributed": "positioned across the area" | |
}, | |
"person": { | |
"linear": "moving in a line", | |
"clustered": "gathered together", | |
"circular": "forming a circle", | |
"scattered": "spread across the area", | |
"distributed": "positioned throughout the scene" | |
} | |
} | |
# 獲取對應的描述模板 | |
if class_name in arrangement_templates: | |
template_dict = arrangement_templates[class_name] | |
base_description = template_dict.get(arrangement_pattern, "positioned in the scene") | |
else: | |
# 通用的排列描述 | |
generic_templates = { | |
"linear": "arranged in a line", | |
"clustered": "grouped together", | |
"circular": "arranged in a circular pattern", | |
"scattered": "distributed across the space", | |
"regular": "evenly positioned", | |
"distributed": "thoughtfully placed" | |
} | |
base_description = generic_templates.get(arrangement_pattern, "positioned in the scene") | |
return base_description | |
def _get_single_object_feature(self, class_name: str, scene_type: Optional[str], | |
detected_objects: Optional[List[Dict]]) -> Optional[str]: | |
""" | |
為單個物件生成特徵描述符 | |
當只有一個物件時,我們可以提供更具體的位置或功能描述 | |
Args: | |
class_name: 物件類別名稱 | |
scene_type: 場景類型 | |
detected_objects: 檢測物件(單個) | |
Returns: | |
Optional[str]: 特徵描述符 | |
""" | |
if not detected_objects or len(detected_objects) != 1: | |
return None | |
obj = detected_objects[0] | |
region = obj.get("region", "").lower() | |
# 基於位置的描述 | |
if "center" in region: | |
if class_name == "dining table": | |
return "central" | |
elif class_name == "chair": | |
return "centrally placed" | |
elif "corner" in region or "left" in region or "right" in region: | |
return "positioned" | |
# 基於場景的功能描述 | |
if scene_type and scene_type in ["dining_area", "restaurant"]: | |
if class_name == "chair": | |
return "dining" | |
elif class_name == "vase": | |
return "decorative" | |
return None | |
def _get_plural_form(self, word: str) -> str: | |
""" | |
獲取詞彙的複數形式 | |
Args: | |
word: 單數詞彙 | |
Returns: | |
str: 複數形式 | |
""" | |
try: | |
# 特殊複數形式 | |
irregular_plurals = { | |
'person': 'people', | |
'child': 'children', | |
'foot': 'feet', | |
'tooth': 'teeth', | |
'mouse': 'mice', | |
'man': 'men', | |
'woman': 'women' | |
} | |
if word.lower() in irregular_plurals: | |
return irregular_plurals[word.lower()] | |
# 規則複數形式 | |
if word.endswith(('s', 'sh', 'ch', 'x', 'z')): | |
return word + 'es' | |
elif word.endswith('y') and word[-2] not in 'aeiou': | |
return word[:-1] + 'ies' | |
elif word.endswith('f'): | |
return word[:-1] + 'ves' | |
elif word.endswith('fe'): | |
return word[:-2] + 'ves' | |
else: | |
return word + 's' | |
except Exception as e: | |
self.logger.warning(f"Error getting plural form for '{word}': {str(e)}") | |
return word + 's' | |
def _normalize_object_class_name(self, class_name: str) -> str: | |
""" | |
標準化物件類別名稱,確保輸出自然語言格式 | |
Args: | |
class_name: 原始類別名稱 | |
Returns: | |
str: 標準化後的類別名稱 | |
""" | |
try: | |
if not class_name or not isinstance(class_name, str): | |
return "object" | |
# 移除可能的技術性前綴或後綴 | |
import re | |
normalized = re.sub(r'^(class_|id_|type_)', '', class_name.lower()) | |
normalized = re.sub(r'(_class|_id|_type)$', '', normalized) | |
# 將下劃線和連字符替換為空格 | |
normalized = normalized.replace('_', ' ').replace('-', ' ') | |
# 移除多餘空格 | |
normalized = ' '.join(normalized.split()) | |
# 特殊類別名稱的標準化映射 | |
class_name_mapping = { | |
'traffic light': 'traffic light', | |
'stop sign': 'stop sign', | |
'fire hydrant': 'fire hydrant', | |
'dining table': 'dining table', | |
'potted plant': 'potted plant', | |
'tv monitor': 'television', | |
'cell phone': 'mobile phone', | |
'wine glass': 'wine glass', | |
'hot dog': 'hot dog', | |
'teddy bear': 'teddy bear', | |
'hair drier': 'hair dryer', | |
'toothbrush': 'toothbrush' | |
} | |
return class_name_mapping.get(normalized, normalized) | |
except Exception as e: | |
self.logger.warning(f"Error normalizing class name '{class_name}': {str(e)}") | |
return class_name if isinstance(class_name, str) else "object" | |
def generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str: | |
""" | |
當模板不可用時生成基本詳細信息 | |
Args: | |
scene_type: 識別的場景類型 | |
detected_objects: 檢測到的物件列表 | |
Returns: | |
str: 基本場景詳細信息 | |
""" | |
try: | |
# 處理特定場景類型的自定義邏輯 | |
if scene_type == "living_room": | |
tv_objs = [obj for obj in detected_objects if obj.get("class_id") == 62] # TV | |
sofa_objs = [obj for obj in detected_objects if obj.get("class_id") == 57] # Sofa | |
if tv_objs and sofa_objs: | |
tv_region = tv_objs[0].get("region", "center") | |
sofa_region = sofa_objs[0].get("region", "center") | |
arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, " | |
arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. " | |
return f"{arrangement}This appears to be a space designed for relaxation and entertainment." | |
elif scene_type == "bedroom": | |
bed_objs = [obj for obj in detected_objects if obj.get("class_id") == 59] # Bed | |
if bed_objs: | |
bed_region = bed_objs[0].get("region", "center") | |
extra_items = [] | |
for obj in detected_objects: | |
if obj.get("class_id") == 74: # Clock | |
extra_items.append("clock") | |
elif obj.get("class_id") == 73: # Book | |
extra_items.append("book") | |
extras = "" | |
if extra_items: | |
extras = f" There is also a {' and a '.join(extra_items)} visible." | |
return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}" | |
elif scene_type in ["dining_area", "kitchen"]: | |
# 計算食物和餐飲相關物品 | |
food_items = [] | |
for obj in detected_objects: | |
if obj.get("class_id") in [39, 41, 42, 43, 44, 45]: # 廚房物品 | |
food_items.append(obj.get("class_name", "kitchen item")) | |
food_str = "" | |
if food_items: | |
unique_items = list(set(food_items)) | |
if len(unique_items) <= 3: | |
food_str = f" with {', '.join(unique_items)}" | |
else: | |
food_str = f" with {', '.join(unique_items[:3])} and other items" | |
return f"{food_str}." | |
elif scene_type == "city_street": | |
# 計算人員和車輛 | |
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0]) | |
vehicle_count = len([obj for obj in detected_objects | |
if obj.get("class_id") in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck | |
traffic_desc = "" | |
if people_count > 0 and vehicle_count > 0: | |
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and " | |
traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
elif people_count > 0: | |
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}" | |
elif vehicle_count > 0: | |
traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
return f"{traffic_desc}." | |
elif scene_type == "asian_commercial_street": | |
# 尋找關鍵城市元素 | |
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0]) | |
vehicle_count = len([obj for obj in detected_objects if obj.get("class_id") in [1, 2, 3]]) | |
# 分析行人分布 | |
people_positions = [] | |
for obj in detected_objects: | |
if obj.get("class_id") == 0: # Person | |
people_positions.append(obj.get("normalized_center", (0.5, 0.5))) | |
# 檢查人員是否沿線分布(表示步行路徑) | |
structured_path = False | |
if len(people_positions) >= 3: | |
# 簡化檢查 - 查看多個人員的y坐標是否相似 | |
y_coords = [pos[1] for pos in people_positions] | |
y_mean = sum(y_coords) / len(y_coords) | |
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords) | |
if y_variance < 0.05: # 低變異數表示線性排列 | |
structured_path = True | |
street_desc = "A commercial street with " | |
if people_count > 0: | |
street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}" | |
if vehicle_count > 0: | |
street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
elif vehicle_count > 0: | |
street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}" | |
else: | |
street_desc += "various commercial elements" | |
if structured_path: | |
street_desc += ". The pedestrians appear to be following a defined walking path" | |
# 添加文化元素 | |
street_desc += ". The signage and architectural elements suggest an Asian urban setting." | |
return street_desc | |
# 默認通用描述 | |
return "The scene contains various elements characteristic of this environment." | |
except Exception as e: | |
self.logger.warning(f"Error generating basic details for scene_type '{scene_type}': {str(e)}") | |
return "The scene contains various elements characteristic of this environment." | |
def generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str: | |
""" | |
為模板佔位符生成內容 | |
Args: | |
placeholder: 模板佔位符 | |
detected_objects: 檢測到的物件列表 | |
scene_type: 場景類型 | |
Returns: | |
str: 生成的佔位符內容 | |
""" | |
try: | |
# 處理不同類型的佔位符與自定義邏輯 | |
if placeholder == "furniture": | |
# 提取家具物品 | |
furniture_ids = [56, 57, 58, 59, 60, 61] # 家具類別ID示例 | |
furniture_objects = [obj for obj in detected_objects if obj.get("class_id") in furniture_ids] | |
if furniture_objects: | |
furniture_names = [] | |
for obj in furniture_objects[:3]: | |
raw_name = obj.get("class_name", "furniture") | |
normalized_name = self._normalize_object_class_name(raw_name) | |
furniture_names.append(normalized_name) | |
unique_names = list(set(furniture_names)) | |
if len(unique_names) == 1: | |
return unique_names[0] | |
elif len(unique_names) == 2: | |
return f"{unique_names[0]} and {unique_names[1]}" | |
else: | |
return ", ".join(unique_names[:-1]) + f", and {unique_names[-1]}" | |
return "various furniture items" | |
elif placeholder == "electronics": | |
# 提取電子物品 | |
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # 電子設備類別ID示例 | |
electronics_objects = [obj for obj in detected_objects if obj.get("class_id") in electronics_ids] | |
if electronics_objects: | |
electronics_names = [obj.get("class_name", "electronic device") for obj in electronics_objects[:3]] | |
return ", ".join(set(electronics_names)) | |
return "electronic devices" | |
elif placeholder == "people_count": | |
# 計算人數 | |
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0]) | |
if people_count == 0: | |
return "no people" | |
elif people_count == 1: | |
return "one person" | |
elif people_count < 5: | |
return f"{people_count} people" | |
else: | |
return "several people" | |
elif placeholder == "seating": | |
# 提取座位物品 | |
seating_ids = [56, 57] # chair, sofa | |
seating_objects = [obj for obj in detected_objects if obj.get("class_id") in seating_ids] | |
if seating_objects: | |
seating_names = [obj.get("class_name", "seating") for obj in seating_objects[:2]] | |
return ", ".join(set(seating_names)) | |
return "seating arrangements" | |
# 默認情況 - 空字符串 | |
return "" | |
except Exception as e: | |
self.logger.warning(f"Error generating placeholder content for '{placeholder}': {str(e)}") | |
return "" | |
def describe_functional_zones(self, functional_zones: Dict) -> str: | |
""" | |
生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題 | |
Args: | |
functional_zones: 識別出的功能區域字典 | |
Returns: | |
str: 功能區域描述 | |
""" | |
try: | |
if not functional_zones: | |
return "" | |
# 處理不同類型的 functional_zones 參數 | |
if isinstance(functional_zones, list): | |
# 如果是列表,轉換為字典格式 | |
zones_dict = {} | |
for i, zone in enumerate(functional_zones): | |
if isinstance(zone, dict) and 'name' in zone: | |
zone_name = self._normalize_zone_name(zone['name']) | |
else: | |
zone_name = f"functional area {i+1}" | |
zones_dict[zone_name] = zone if isinstance(zone, dict) else {"description": str(zone)} | |
functional_zones = zones_dict | |
elif not isinstance(functional_zones, dict): | |
return "" | |
# 標準化所有區域鍵名,移除內部標識符格式 | |
normalized_zones = {} | |
for zone_key, zone_data in functional_zones.items(): | |
normalized_key = self._normalize_zone_name(zone_key) | |
normalized_zones[normalized_key] = zone_data | |
functional_zones = normalized_zones | |
# 計算場景中的總人數 | |
total_people_count = 0 | |
people_by_zone = {} | |
# 計算每個區域的人數並累計總人數 | |
for zone_name, zone_info in functional_zones.items(): | |
if "objects" in zone_info: | |
zone_people_count = zone_info["objects"].count("person") | |
people_by_zone[zone_name] = zone_people_count | |
total_people_count += zone_people_count | |
# 分類區域為行人區域和其他區域 | |
pedestrian_zones = [] | |
other_zones = [] | |
for zone_name, zone_info in functional_zones.items(): | |
# 檢查是否是行人相關區域 | |
if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]): | |
pedestrian_zones.append((zone_name, zone_info)) | |
else: | |
other_zones.append((zone_name, zone_info)) | |
# 獲取最重要的行人區域和其他區域 | |
main_pedestrian_zones = sorted(pedestrian_zones, | |
key=lambda z: people_by_zone.get(z[0], 0), | |
reverse=True)[:1] # 最多1個主要行人區域 | |
top_other_zones = sorted(other_zones, | |
key=lambda z: len(z[1].get("objects", [])), | |
reverse=True)[:2] # 最多2個其他區域 | |
# 合併區域 | |
top_zones = main_pedestrian_zones + top_other_zones | |
if not top_zones: | |
return "" | |
# 生成匯總描述 | |
summary = "" | |
max_mentioned_people = 0 # 追蹤已經提到的最大人數 | |
# 如果總人數顯著且還沒在主描述中提到,添加總人數描述 | |
if total_people_count > 5: | |
summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). " | |
max_mentioned_people = total_people_count # 更新已提到的最大人數 | |
# 處理每個區域的描述,確保人數信息的一致性 | |
processed_zones = [] | |
for zone_name, zone_info in top_zones: | |
zone_desc = zone_info.get("description", "a functional zone") | |
zone_people_count = people_by_zone.get(zone_name, 0) | |
# 檢查描述中是否包含人數資訊 | |
contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower()) | |
# 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述 | |
if contains_people_info and zone_people_count < max_mentioned_people: | |
parts = zone_desc.split("with") | |
if len(parts) > 1: | |
# 移除人數部分 | |
zone_desc = parts[0].strip() + " area" | |
processed_zones.append((zone_name, {"description": zone_desc})) | |
# 根據處理後的區域數量生成最終描述 | |
final_desc = "" | |
if len(processed_zones) == 1: | |
_, zone_info = processed_zones[0] | |
zone_desc = zone_info["description"] | |
final_desc = summary + f"The scene includes {zone_desc}." | |
elif len(processed_zones) == 2: | |
_, zone1_info = processed_zones[0] | |
_, zone2_info = processed_zones[1] | |
zone1_desc = zone1_info["description"] | |
zone2_desc = zone2_info["description"] | |
final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}." | |
else: | |
zones_desc = ["The scene contains multiple functional areas including"] | |
zone_descriptions = [z[1]["description"] for z in processed_zones] | |
# 格式化最終的多區域描述 | |
if len(zone_descriptions) == 3: | |
formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}" | |
else: | |
formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}" | |
final_desc = summary + f"{zones_desc[0]} {formatted_desc}." | |
return self.optimize_object_description(final_desc) | |
except Exception as e: | |
self.logger.warning(f"Error describing functional zones: {str(e)}") | |
return "" | |
def _normalize_zone_name(self, zone_name: str) -> str: | |
""" | |
將內部區域鍵名標準化為自然語言描述 | |
Args: | |
zone_name: 原始區域名稱 | |
Returns: | |
str: 標準化後的區域名稱 | |
""" | |
try: | |
if not zone_name or not isinstance(zone_name, str): | |
return "functional area" | |
# 移除數字後綴(如 crossing_zone_1 -> crossing_zone) | |
import re | |
base_name = re.sub(r'_\d+$', '', zone_name) | |
# 將下劃線替換為空格 | |
normalized = base_name.replace('_', ' ') | |
# 標準化常見的區域類型名稱 | |
zone_type_mapping = { | |
'crossing zone': 'pedestrian crossing area', | |
'vehicle zone': 'vehicle movement area', | |
'pedestrian zone': 'pedestrian activity area', | |
'traffic zone': 'traffic flow area', | |
'waiting zone': 'waiting area', | |
'seating zone': 'seating area', | |
'dining zone': 'dining area', | |
'furniture zone': 'furniture arrangement area', | |
'electronics zone': 'electronics area', | |
'people zone': 'social activity area', | |
'functional area': 'activity area' | |
} | |
# 檢查是否有對應的標準化名稱 | |
for pattern, replacement in zone_type_mapping.items(): | |
if pattern in normalized.lower(): | |
return replacement | |
# 如果沒有特定映射,使用通用格式 | |
if 'zone' in normalized.lower(): | |
normalized = normalized.replace('zone', 'area') | |
elif not any(keyword in normalized.lower() for keyword in ['area', 'space', 'region']): | |
normalized += ' area' | |
return normalized.strip() | |
except Exception as e: | |
self.logger.warning(f"Error normalizing zone name '{zone_name}': {str(e)}") | |
return "activity area" | |
def get_configuration(self) -> Dict[str, Any]: | |
""" | |
獲取當前配置參數 | |
Returns: | |
Dict[str, Any]: 配置參數字典 | |
""" | |
return { | |
"min_prominence_score": self.min_prominence_score, | |
"max_categories_to_return": self.max_categories_to_return, | |
"max_total_objects": self.max_total_objects, | |
"confidence_threshold_for_description": self.confidence_threshold_for_description | |
} | |
def update_configuration(self, **kwargs): | |
""" | |
更新配置參數 | |
Args: | |
**kwargs: 要更新的配置參數 | |
""" | |
try: | |
for key, value in kwargs.items(): | |
if hasattr(self, key): | |
old_value = getattr(self, key) | |
setattr(self, key, value) | |
self.logger.info(f"Updated {key}: {old_value} -> {value}") | |
else: | |
self.logger.warning(f"Unknown configuration parameter: {key}") | |
except Exception as e: | |
self.logger.error(f"Error updating configuration: {str(e)}") | |
raise ObjectDescriptionError(f"Failed to update configuration: {str(e)}") from e | |