Spaces:
Running
on
Zero
Running
on
Zero
File size: 77,928 Bytes
e6a18b7 4ab83fb e6a18b7 5003ee4 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 60fe35c e6a18b7 60fe35c e6a18b7 60fe35c e6a18b7 60fe35c e6a18b7 60fe35c e6a18b7 60fe35c e6a18b7 60fe35c bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 e6a18b7 bb01345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 |
import logging
import traceback
import re
from typing import Dict, List, Tuple, Optional, Any
import numpy as np
class ObjectDescriptionError(Exception):
"""物件描述生成過程中的自定義異常"""
pass
class ObjectDescriptionGenerator:
"""
物件描述生成器 - 負責將檢測到的物件轉換為自然語言描述
該類別處理物件相關的所有描述生成邏輯,包括重要物件的識別、
空間位置描述、物件列表格式化以及描述文本的優化。
"""
def __init__(self,
min_prominence_score: float = 0.1,
max_categories_to_return: int = 5,
max_total_objects: int = 7,
confidence_threshold_for_description: float = 0.25,
region_analyzer: Optional[Any] = None):
"""
初始化物件描述生成器
Args:
min_prominence_score: 物件顯著性的最低分數閾值
max_categories_to_return: 返回的物件類別最大數量
max_total_objects: 返回的物件總數上限
confidence_threshold_for_description: 用於描述的置信度閾值
"""
self.logger = logging.getLogger(self.__class__.__name__)
self.min_prominence_score = min_prominence_score
self.max_categories_to_return = max_categories_to_return
self.max_total_objects = max_total_objects
self.confidence_threshold_for_description = confidence_threshold_for_description
self.region_analyzer = region_analyzer
self.logger.info("ObjectDescriptionGenerator initialized with prominence_score=%.2f, "
"max_categories=%d, max_objects=%d, confidence_threshold=%.2f",
min_prominence_score, max_categories_to_return,
max_total_objects, confidence_threshold_for_description)
def get_prominent_objects(self, detected_objects: List[Dict],
min_prominence_score: float = 0.5,
max_categories_to_return: Optional[int] = None) -> List[Dict]:
"""
獲取最重要的物件,基於置信度、大小和位置計算重要性評分
Args:
detected_objects: 檢測到的物件列表
min_prominence_score: 最小重要性分數閾值,範圍 0.0-1.0
max_categories_to_return: 可選的最大返回類別數量限制
Returns:
List[Dict]: 按重要性排序的物件列表
"""
try:
if not detected_objects:
return []
prominent_objects = []
for obj in detected_objects:
# 計算重要性評分
prominence_score = self._calculate_prominence_score(obj)
# 只保留超過閾值的物件
if prominence_score >= min_prominence_score:
obj_copy = obj.copy()
obj_copy['prominence_score'] = prominence_score
prominent_objects.append(obj_copy)
# 按重要性評分排序(從高到低)
prominent_objects.sort(key=lambda x: x.get('prominence_score', 0), reverse=True)
# 如果指定了最大類別數量限制,進行過濾
if max_categories_to_return is not None and max_categories_to_return > 0:
categories_seen = set()
filtered_objects = []
for obj in prominent_objects:
class_name = obj.get("class_name", "unknown")
# 如果是新類別且未達到限制
if class_name not in categories_seen:
if len(categories_seen) < max_categories_to_return:
categories_seen.add(class_name)
filtered_objects.append(obj)
else:
# 已見過的類別,直接添加
filtered_objects.append(obj)
return filtered_objects
return prominent_objects
except Exception as e:
self.logger.error(f"Error calculating prominent objects: {str(e)}")
return []
def set_region_analyzer(self, region_analyzer: Any) -> None:
"""
設置RegionAnalyzer,用於標準化空間描述生成
Args:
region_analyzer: RegionAnalyzer實例
"""
try:
self.region_analyzer = region_analyzer
self.logger.info("RegionAnalyzer instance set for ObjectDescriptionGenerator")
except Exception as e:
self.logger.warning(f"Error setting RegionAnalyzer: {str(e)}")
def _get_standardized_spatial_description(self, obj: Dict) -> str:
"""
使用RegionAnalyzer生成標準化空間描述的內部方法
Args:
obj: 物件字典
Returns:
str: 標準化空間描述,失敗時返回空字串
"""
try:
if hasattr(self, 'region_analyzer') and self.region_analyzer:
region = obj.get("region", "")
object_type = obj.get("class_name", "")
if hasattr(self.region_analyzer, 'get_contextual_spatial_description'):
return self.region_analyzer.get_contextual_spatial_description(region, object_type)
elif hasattr(self.region_analyzer, 'get_spatial_description_phrase'):
return self.region_analyzer.get_spatial_description_phrase(region)
return ""
except Exception as e:
self.logger.warning(f"Error getting standardized spatial description: {str(e)}")
if object_type:
return f"visible in the scene"
return "present in the view"
def _calculate_prominence_score(self, obj: Dict) -> float:
"""
計算物件的重要性評分
Args:
obj: 物件字典,包含檢測信息
Returns:
float: 重要性評分 (0.0-1.0)
"""
try:
# 基礎置信度評分 (權重: 40%)
confidence = obj.get("confidence", 0.5)
confidence_score = confidence * 0.4
# 大小評分 (權重: 30%)
normalized_area = obj.get("normalized_area", 0.1)
# 使用對數縮放避免過大物件主導評分
size_score = min(np.log(normalized_area * 10 + 1) / np.log(11), 1.0) * 0.3
# 位置評分 (權重: 20%)
# 中心區域的物件通常更重要
center_x, center_y = obj.get("normalized_center", [0.5, 0.5])
distance_from_center = np.sqrt((center_x - 0.5)**2 + (center_y - 0.5)**2)
position_score = (1 - min(distance_from_center * 2, 1.0)) * 0.2
# 類別重要性評分 (權重: 10%)
class_importance = self._get_class_importance(obj.get("class_name", "unknown"))
class_score = class_importance * 0.1
total_score = confidence_score + size_score + position_score + class_score
# 確保評分在有效範圍內
return max(0.0, min(1.0, total_score))
except Exception as e:
self.logger.warning(f"Error calculating prominence score for object: {str(e)}")
return 0.5 # 返回中等評分作為備用
def _get_class_importance(self, class_name: str) -> float:
"""
根據物件類別返回重要性係數
Args:
class_name: 物件類別名稱
Returns:
float: 類別重要性係數 (0.0-1.0)
"""
# 高重要性物件(人、車輛、建築)
high_importance = ["person", "car", "truck", "bus", "motorcycle", "bicycle", "building"]
# 中等重要性物件(家具、電器)
medium_importance = ["chair", "couch", "tv", "laptop", "refrigerator", "dining table", "bed"]
# 低重要性物件(小物品、配件)
low_importance = ["handbag", "backpack", "umbrella", "cell phone", "remote", "mouse"]
class_name_lower = class_name.lower()
if any(item in class_name_lower for item in high_importance):
return 1.0
elif any(item in class_name_lower for item in medium_importance):
return 0.7
elif any(item in class_name_lower for item in low_importance):
return 0.4
else:
return 0.6 # 預設中等重要性
def format_object_list_for_description(self,
objects: List[Dict],
use_indefinite_article_for_one: bool = False,
count_threshold_for_generalization: int = -1,
max_types_to_list: int = 5) -> str:
"""
將物件列表格式化為人類可讀的字符串,包含計數信息
Args:
objects: 物件字典列表,每個應包含 'class_name'
use_indefinite_article_for_one: 單個物件是否使用 "a/an",否則使用 "one"
count_threshold_for_generalization: 超過此計數時使用通用術語,-1表示精確計數
max_types_to_list: 列表中包含的不同物件類型最大數量
Returns:
str: 格式化的物件描述字符串
"""
try:
if not objects:
return "no specific objects clearly identified"
counts: Dict[str, int] = {}
for obj in objects:
name = obj.get("class_name", "unknown object")
if name == "unknown object" or not name:
continue
counts[name] = counts.get(name, 0) + 1
if not counts:
return "no specific objects clearly identified"
descriptions = []
# 按計數降序然後按名稱升序排序,限制物件類型數量
sorted_counts = sorted(counts.items(), key=lambda item: (-item[1], item[0]))[:max_types_to_list]
for name, count in sorted_counts:
if count == 1:
if use_indefinite_article_for_one:
if name[0].lower() in 'aeiou':
descriptions.append(f"an {name}")
else:
descriptions.append(f"a {name}")
else:
descriptions.append(f"one {name}")
else:
# 處理複數形式
plural_name = name
if name.endswith("y") and not name.lower().endswith(("ay", "ey", "iy", "oy", "uy")):
plural_name = name[:-1] + "ies"
elif name.endswith(("s", "sh", "ch", "x", "z")):
plural_name = name + "es"
elif not name.endswith("s"):
plural_name = name + "s"
if count_threshold_for_generalization != -1 and count > count_threshold_for_generalization:
if count <= count_threshold_for_generalization + 3:
descriptions.append(f"several {plural_name}")
else:
descriptions.append(f"many {plural_name}")
else:
descriptions.append(f"{count} {plural_name}")
if not descriptions:
return "no specific objects clearly identified"
if len(descriptions) == 1:
return descriptions[0]
elif len(descriptions) == 2:
return f"{descriptions[0]} and {descriptions[1]}"
else:
# 使用牛津逗號格式
return ", ".join(descriptions[:-1]) + f", and {descriptions[-1]}"
except Exception as e:
self.logger.warning(f"Error formatting object list: {str(e)}")
return "various objects"
def get_spatial_description(self, obj: Dict, image_width: Optional[int] = None,
image_height: Optional[int] = None,
region_analyzer: Optional[Any] = None) -> str:
"""
為物件生成空間位置描述
Args:
obj: 物件字典
image_width: 可選的圖像寬度
image_height: 可選的圖像高度
region_analyzer: 可選的RegionAnalyzer實例,用於生成標準化描述
Returns:
str: 空間描述字符串,空值region時返回空字串
"""
try:
region = obj.get("region") or ""
# 處理空值或無效region,直接返回空字串避免不完整描述
if not region.strip() or region == "unknown":
# 根據物件類型提供合適的預設位置描述
if object_type and any(vehicle in object_type.lower() for vehicle in ["car", "truck", "bus"]):
return "positioned in the scene"
elif object_type and "person" in object_type.lower():
return "present in the area"
else:
return "located in the scene"
# 如果提供了RegionAnalyzer實例,使用其標準化方法
if region_analyzer and hasattr(region_analyzer, 'get_spatial_description_phrase'):
object_type = obj.get("class_name", "")
if hasattr(region_analyzer, 'get_contextual_spatial_description'):
spatial_desc = region_analyzer.get_contextual_spatial_description(region, object_type)
else:
spatial_desc = region_analyzer.get_spatial_description_phrase(region)
if spatial_desc:
return spatial_desc
# 備用邏輯:使用改進的內建映射
clean_region = region.replace('_', ' ').strip().lower()
region_map = {
"top left": "in the upper left area",
"top center": "in the upper area",
"top right": "in the upper right area",
"middle left": "on the left side",
"middle center": "in the center",
"center": "in the center",
"middle right": "on the right side",
"bottom left": "in the lower left area",
"bottom center": "in the lower area",
"bottom right": "in the lower right area"
}
# 直接映射匹配
if clean_region in region_map:
return region_map[clean_region]
# 模糊匹配處理
if "top" in clean_region and "left" in clean_region:
return "in the upper left area"
elif "top" in clean_region and "right" in clean_region:
return "in the upper right area"
elif "bottom" in clean_region and "left" in clean_region:
return "in the lower left area"
elif "bottom" in clean_region and "right" in clean_region:
return "in the lower right area"
elif "top" in clean_region:
return "in the upper area"
elif "bottom" in clean_region:
return "in the lower area"
elif "left" in clean_region:
return "on the left side"
elif "right" in clean_region:
return "on the right side"
elif "center" in clean_region or "middle" in clean_region:
return "in the center"
# 如果region無法識別,使用normalized_center作為最後備用
norm_center = obj.get("normalized_center")
if norm_center and image_width and image_height:
x_norm, y_norm = norm_center
h_pos = "left" if x_norm < 0.4 else "right" if x_norm > 0.6 else "center"
v_pos = "upper" if y_norm < 0.4 else "lower" if y_norm > 0.6 else "center"
if h_pos == "center" and v_pos == "center":
return "in the center"
return f"in the {v_pos} {h_pos} area"
# 如果所有方法都失敗,返回空字串
return ""
except Exception as e:
self.logger.warning(f"Error generating spatial description: {str(e)}")
return ""
def optimize_object_description(self, description: str) -> str:
"""
優化物件描述,避免重複列舉相同物件
Args:
description: 原始描述文本
Returns:
str: 優化後的描述文本
"""
try:
import re
# 處理床鋪重複描述
if "bed in the room" in description:
description = description.replace("a bed in the room", "a bed")
# 處理重複的物件列表
object_lists = re.findall(r'with ([^\.]+?)(?:\.|\band\b)', description)
for obj_list in object_lists:
# 計算每個物件出現次數
items = re.findall(r'([a-zA-Z\s]+)(?:,|\band\b|$)', obj_list)
item_counts = {}
for item in items:
item = item.strip()
if item and item not in ["and", "with"]:
if item not in item_counts:
item_counts[item] = 0
item_counts[item] += 1
# 生成優化後的物件列表
if item_counts:
new_items = []
for item, count in item_counts.items():
if count > 1:
new_items.append(f"{count} {item}s")
else:
new_items.append(item)
# 格式化新列表
if len(new_items) == 1:
new_list = new_items[0]
elif len(new_items) == 2:
new_list = f"{new_items[0]} and {new_items[1]}"
else:
new_list = ", ".join(new_items[:-1]) + f", and {new_items[-1]}"
# 替換原始列表
description = description.replace(obj_list, new_list)
return description
except Exception as e:
self.logger.warning(f"Error optimizing object description: {str(e)}")
return description
def generate_dynamic_everyday_description(self,
detected_objects: List[Dict],
lighting_info: Optional[Dict] = None,
viewpoint: str = "eye_level",
spatial_analysis: Optional[Dict] = None,
image_dimensions: Optional[Tuple[int, int]] = None,
places365_info: Optional[Dict] = None,
object_statistics: Optional[Dict] = None) -> str:
"""
為日常場景動態生成描述,基於所有相關的檢測物件、計數和上下文
Args:
detected_objects: 檢測到的物件列表
lighting_info: 照明信息
viewpoint: 視角類型
spatial_analysis: 空間分析結果
image_dimensions: 圖像尺寸
places365_info: Places365場景分類信息
object_statistics: 物件統計信息
Returns:
str: 動態生成的場景描述
"""
try:
description_segments = []
image_width, image_height = image_dimensions if image_dimensions else (None, None)
self.logger.debug(f"Generating dynamic description for {len(detected_objects)} objects, "
f"viewpoint: {viewpoint}, lighting: {lighting_info is not None}")
# 1. 整體氛圍(照明和視角)
ambiance_parts = []
if lighting_info:
time_of_day = lighting_info.get("time_of_day", "unknown lighting")
is_indoor = lighting_info.get("is_indoor")
ambiance_statement = "This is"
if is_indoor is True:
ambiance_statement += " an indoor scene"
elif is_indoor is False:
ambiance_statement += " an outdoor scene"
else:
ambiance_statement += " a scene"
# remove underline
readable_lighting = f"with {time_of_day.replace('_', ' ')} lighting conditions"
ambiance_statement += f", likely {readable_lighting}."
ambiance_parts.append(ambiance_statement)
if viewpoint and viewpoint != "eye_level":
if not ambiance_parts:
ambiance_parts.append(f"From {viewpoint.replace('_', ' ')}, the general layout of the scene is observed.")
else:
ambiance_parts[-1] = ambiance_parts[-1].rstrip('.') + f", viewed from {viewpoint.replace('_', ' ')}."
if ambiance_parts:
description_segments.append(" ".join(ambiance_parts))
# 2. 描述所有檢測到的物件,按類別分組,使用準確計數和位置
if not detected_objects:
if not description_segments:
description_segments.append("A general scene is visible, but no specific objects were clearly identified.")
else:
description_segments.append("Within this setting, no specific objects were clearly identified.")
else:
objects_by_class: Dict[str, List[Dict]] = {}
# 使用置信度過濾
confident_objects = [obj for obj in detected_objects
if obj.get("confidence", 0) >= self.confidence_threshold_for_description]
print(f"DEBUG: After confidence filtering (threshold={self.confidence_threshold_for_description}):")
for class_name in ["car", "traffic light", "person", "handbag"]:
class_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name]
print(f"DEBUG: {class_name}: {len(class_objects)} confident objects")
if not confident_objects:
no_confident_obj_msg = "While some elements might be present, no objects were identified with sufficient confidence for a detailed description."
if not description_segments:
description_segments.append(no_confident_obj_msg)
else:
description_segments.append(no_confident_obj_msg.lower().capitalize())
else:
if object_statistics:
# 使用預計算的統計信息,採用動態的信心度
for class_name, stats in object_statistics.items():
count = stats.get("count", 0)
avg_confidence = stats.get("avg_confidence", 0)
# 動態調整置信度閾值
dynamic_threshold = self.confidence_threshold_for_description
if class_name in ["potted plant", "vase", "clock", "book"]:
dynamic_threshold = max(0.15, self.confidence_threshold_for_description * 0.6)
elif count >= 3:
dynamic_threshold = max(0.2, self.confidence_threshold_for_description * 0.8)
if count > 0 and avg_confidence >= dynamic_threshold:
matching_objects = [obj for obj in confident_objects if obj.get("class_name") == class_name]
if not matching_objects:
matching_objects = [obj for obj in detected_objects
if obj.get("class_name") == class_name and obj.get("confidence", 0) >= dynamic_threshold]
if matching_objects:
actual_count = min(stats["count"], len(matching_objects))
objects_by_class[class_name] = matching_objects[:actual_count]
else:
# 備用邏輯,同樣使用動態閾值
for obj in confident_objects:
name = obj.get("class_name", "unknown object")
if name == "unknown object" or not name:
continue
if name not in objects_by_class:
objects_by_class[name] = []
objects_by_class[name].append(obj)
print(f"DEBUG: Before spatial deduplication:")
for class_name in ["car", "traffic light", "person", "handbag"]:
if class_name in objects_by_class:
print(f"DEBUG: {class_name}: {len(objects_by_class[class_name])} objects before dedup")
if not objects_by_class:
description_segments.append("No common objects were confidently identified for detailed description.")
else:
# 物件組排序函數
def sort_key_object_groups(item_tuple: Tuple[str, List[Dict]]):
class_name_key, obj_group_list = item_tuple
priority = 3
count = len(obj_group_list)
# 確保類別名稱已標準化
normalized_class_name = self._normalize_object_class_name(class_name_key)
# 動態優先級
if normalized_class_name == "person":
priority = 0
elif normalized_class_name in ["dining table", "chair", "sofa", "bed"]:
priority = 1
elif normalized_class_name in ["car", "bus", "truck", "traffic light"]:
priority = 2
elif count >= 3:
priority = max(1, priority - 1)
elif normalized_class_name in ["potted plant", "vase", "clock", "book"] and count >= 2:
priority = 2
avg_area = sum(o.get("normalized_area", 0.0) for o in obj_group_list) / len(obj_group_list) if obj_group_list else 0
quantity_bonus = min(count / 5.0, 1.0)
return (priority, -len(obj_group_list), -avg_area, -quantity_bonus)
# remove duplicate
deduplicated_objects_by_class = {}
processed_positions = []
for class_name, group_of_objects in objects_by_class.items():
unique_objects = []
for obj in group_of_objects:
obj_position = obj.get("normalized_center", [0.5, 0.5])
is_duplicate = False
for processed_pos in processed_positions:
position_distance = abs(obj_position[0] - processed_pos[0]) + abs(obj_position[1] - processed_pos[1])
if position_distance < 0.15:
is_duplicate = True
break
if not is_duplicate:
unique_objects.append(obj)
processed_positions.append(obj_position)
if unique_objects:
deduplicated_objects_by_class[class_name] = unique_objects
objects_by_class = deduplicated_objects_by_class
print(f"DEBUG: After spatial deduplication:")
for class_name in ["car", "traffic light", "person", "handbag"]:
if class_name in objects_by_class:
print(f"DEBUG: {class_name}: {len(objects_by_class[class_name])} objects after dedup")
sorted_object_groups = sorted(objects_by_class.items(), key=sort_key_object_groups)
object_clauses = []
for class_name, group_of_objects in sorted_object_groups:
count = len(group_of_objects)
if class_name in ["car", "traffic light", "person", "handbag"]:
print(f"DEBUG: Final count for {class_name}: {count}")
if count == 0:
continue
# 標準化class name
normalized_class_name = self._normalize_object_class_name(class_name)
# 使用統計信息確保準確的數量描述
if object_statistics and class_name in object_statistics:
actual_count = object_statistics[class_name]["count"]
formatted_name_with_exact_count = self._format_object_count_description(
normalized_class_name,
actual_count,
scene_type=scene_type
)
else:
formatted_name_with_exact_count = self._format_object_count_description(
normalized_class_name,
count,
scene_type=scene_type
)
if formatted_name_with_exact_count == "no specific objects clearly identified" or not formatted_name_with_exact_count:
continue
# 確定群組的集體位置
location_description_suffix = ""
if count == 1:
spatial_desc = self.get_spatial_description(group_of_objects[0], image_width, image_height, self.region_analyzer)
if spatial_desc:
location_description_suffix = f"is {spatial_desc}"
else:
distinct_regions = sorted(list(set(obj.get("region", "") for obj in group_of_objects if obj.get("region"))))
valid_regions = [r for r in distinct_regions if r and r != "unknown" and r.strip()]
if not valid_regions:
location_description_suffix = "is positioned in the scene"
elif len(valid_regions) == 1:
spatial_desc = self.get_spatial_description_phrase(valid_regions[0])
location_description_suffix = f"is primarily {spatial_desc}" if spatial_desc else "is positioned in the scene"
elif len(valid_regions) == 2:
clean_region1 = valid_regions[0].replace('_', ' ')
clean_region2 = valid_regions[1].replace('_', ' ')
location_description_suffix = f"is mainly across the {clean_region1} and {clean_region2} areas"
else:
location_description_suffix = "is distributed in various parts of the scene"
else:
distinct_regions = sorted(list(set(obj.get("region", "") for obj in group_of_objects if obj.get("region"))))
valid_regions = [r for r in distinct_regions if r and r != "unknown" and r.strip()]
if not valid_regions:
location_description_suffix = "are visible in the scene"
elif len(valid_regions) == 1:
clean_region = valid_regions[0].replace('_', ' ')
location_description_suffix = f"are primarily in the {clean_region} area"
elif len(valid_regions) == 2:
clean_region1 = valid_regions[0].replace('_', ' ')
clean_region2 = valid_regions[1].replace('_', ' ')
location_description_suffix = f"are mainly across the {clean_region1} and {clean_region2} areas"
else:
location_description_suffix = "are distributed in various parts of the scene"
# 首字母大寫
formatted_name_capitalized = formatted_name_with_exact_count[0].upper() + formatted_name_with_exact_count[1:]
object_clauses.append(f"{formatted_name_capitalized} {location_description_suffix}")
if object_clauses:
if not description_segments:
if object_clauses:
first_clause = object_clauses.pop(0)
description_segments.append(first_clause + ".")
else:
if object_clauses:
description_segments.append("The scene features:")
if object_clauses:
joined_object_clauses = ". ".join(object_clauses)
if joined_object_clauses and not joined_object_clauses.endswith("."):
joined_object_clauses += "."
description_segments.append(joined_object_clauses)
elif not description_segments:
return "The image depicts a scene, but specific objects could not be described with confidence or detail."
# 最終組裝和格式化
raw_description = ""
for i, segment in enumerate(filter(None, description_segments)):
segment = segment.strip()
if not segment:
continue
if not raw_description:
raw_description = segment
else:
if not raw_description.endswith(('.', '!', '?')):
raw_description += "."
raw_description += " " + (segment[0].upper() + segment[1:] if len(segment) > 1 else segment.upper())
if raw_description and not raw_description.endswith(('.', '!', '?')):
raw_description += "."
# 移除重複性和不適當的描述詞彙
raw_description = self._remove_repetitive_descriptors(raw_description)
if not raw_description or len(raw_description.strip()) < 20:
if 'confident_objects' in locals() and confident_objects:
return "The scene contains several detected objects, but a detailed textual description could not be fully constructed."
else:
return "A general scene is depicted with no objects identified with high confidence."
return raw_description
except Exception as e:
error_msg = f"Error generating dynamic everyday description: {str(e)}"
self.logger.error(f"{error_msg}\n{traceback.format_exc()}")
raise ObjectDescriptionError(error_msg) from e
def _remove_repetitive_descriptors(self, description: str) -> str:
"""
移除描述中的重複性和不適當的描述詞彙,特別是 "identical" 等詞彙
Args:
description: 原始描述文本
Returns:
str: 清理後的描述文本
"""
try:
import re
# 定義需要移除或替換的模式
cleanup_patterns = [
# 移除 "identical" 描述模式
(r'\b(\d+)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'),
(r'\b(two|three|four|five|six|seven|eight|nine|ten|eleven|twelve)\s+identical\s+([a-zA-Z\s]+)', r'\1 \2'),
(r'\bidentical\s+([a-zA-Z\s]+)', r'\1'),
# 改善 "comprehensive arrangement" 等過於技術性的表達
(r'\bcomprehensive arrangement of\b', 'arrangement of'),
(r'\bcomprehensive view featuring\b', 'scene featuring'),
(r'\bcomprehensive display of\b', 'display of'),
# 簡化過度描述性的短語
(r'\bpositioning around\s+(\d+)\s+identical\b', r'positioning around \1'),
(r'\barranged around\s+(\d+)\s+identical\b', r'arranged around \1'),
]
processed_description = description
for pattern, replacement in cleanup_patterns:
processed_description = re.sub(pattern, replacement, processed_description, flags=re.IGNORECASE)
# 進一步清理可能的多餘空格
processed_description = re.sub(r'\s+', ' ', processed_description).strip()
self.logger.debug(f"Cleaned description: removed repetitive descriptors")
return processed_description
except Exception as e:
self.logger.warning(f"Error removing repetitive descriptors: {str(e)}")
return description
def _format_object_count_description(self, class_name: str, count: int,
scene_type: Optional[str] = None,
detected_objects: Optional[List[Dict]] = None,
avg_confidence: float = 0.0) -> str:
"""
格式化物件數量描述的核心方法,整合空間排列、材質推斷和場景語境
這個方法是整個物件描述系統的核心,它將多個子功能整合在一起:
1. 數字到文字的轉換(避免阿拉伯數字)
2. 基於場景的材質推斷
3. 空間排列模式的描述
4. 語境化的物件描述
Args:
class_name: 標準化後的類別名稱
count: 物件數量
scene_type: 場景類型,用於語境化描述
detected_objects: 該類型的所有檢測物件,用於空間分析
avg_confidence: 平均檢測置信度,影響材質推斷的可信度
Returns:
str: 完整的格式化數量描述
"""
try:
if count <= 0:
return ""
# 獲取基礎的複數形式
plural_form = self._get_plural_form(class_name)
# 單數情況的處理
if count == 1:
return self._format_single_object_description(class_name, scene_type,
detected_objects, avg_confidence)
# 複數情況的處理
return self._format_multiple_objects_description(class_name, count, plural_form,
scene_type, detected_objects, avg_confidence)
except Exception as e:
self.logger.warning(f"Error formatting object count for '{class_name}': {str(e)}")
return f"{count} {class_name}s" if count > 1 else class_name
def _format_single_object_description(self, class_name: str, scene_type: Optional[str],
detected_objects: Optional[List[Dict]],
avg_confidence: float) -> str:
"""
處理單個物件的描述生成
對於單個物件,我們重點在於通過材質推斷和位置描述來豐富描述內容,
避免簡單的 "a chair" 這樣的描述,而是生成 "a wooden dining chair" 這樣的表達
Args:
class_name: 物件類別名稱
scene_type: 場景類型
detected_objects: 檢測物件列表
avg_confidence: 平均置信度
Returns:
str: 單個物件的完整描述
"""
article = "an" if class_name[0].lower() in 'aeiou' else "a"
# 獲取材質描述符
material_descriptor = self._get_material_descriptor(class_name, scene_type, avg_confidence)
# 獲取位置或特徵描述符
feature_descriptor = self._get_single_object_feature(class_name, scene_type, detected_objects)
# 組合描述
descriptors = []
if material_descriptor:
descriptors.append(material_descriptor)
if feature_descriptor:
descriptors.append(feature_descriptor)
if descriptors:
return f"{article} {' '.join(descriptors)} {class_name}"
else:
return f"{article} {class_name}"
def _format_multiple_objects_description(self, class_name: str, count: int, plural_form: str,
scene_type: Optional[str], detected_objects: Optional[List[Dict]],
avg_confidence: float) -> str:
"""
處理多個物件的描述生成
對於多個物件,我們的重點是:
1. 將數字轉換為文字表達
2. 分析空間排列模式
3. 添加適當的材質或功能描述
4. 生成自然流暢的描述
Args:
class_name: 物件類別名稱
count: 物件數量
plural_form: 複數形式
scene_type: 場景類型
detected_objects: 檢測物件列表
avg_confidence: 平均置信度
Returns:
str: 多個物件的完整描述
"""
# 數字到文字的轉換映射
number_words = {
2: "two", 3: "three", 4: "four", 5: "five", 6: "six",
7: "seven", 8: "eight", 9: "nine", 10: "ten",
11: "eleven", 12: "twelve"
}
# 確定基礎數量表達
if count in number_words:
count_expression = number_words[count]
elif count <= 20:
count_expression = "several"
else:
count_expression = "numerous"
# 獲取材質或功能描述符
material_descriptor = self._get_material_descriptor(class_name, scene_type, avg_confidence)
# 獲取空間排列描述
spatial_descriptor = self._get_spatial_arrangement_descriptor(class_name, scene_type,
detected_objects, count)
# 組合最終描述
descriptors = []
if material_descriptor:
descriptors.append(material_descriptor)
# 構建基礎描述
base_description = f"{count_expression} {' '.join(descriptors)} {plural_form}".strip()
# 添加空間排列信息
if spatial_descriptor:
return f"{base_description} {spatial_descriptor}"
else:
return base_description
def _get_material_descriptor(self, class_name: str, scene_type: Optional[str],
avg_confidence: float) -> Optional[str]:
"""
基於場景語境和置信度進行材質推斷
這個方法實現了智能的材質推斷,它不依賴複雜的圖像分析,
而是基於常識和場景邏輯來推斷最可能的材質描述
Args:
class_name: 物件類別名稱
scene_type: 場景類型
avg_confidence: 檢測置信度,影響推斷的保守程度
Returns:
Optional[str]: 材質描述符,如果無法推斷則返回None
"""
# 只有在置信度足夠高時才進行材質推斷
if avg_confidence < 0.5:
return None
# 餐廳和用餐相關場景
if scene_type and scene_type in ["dining_area", "restaurant", "upscale_dining", "cafe"]:
material_mapping = {
"chair": "wooden" if avg_confidence > 0.7 else None,
"dining table": "wooden",
"couch": "upholstered",
"vase": "decorative"
}
return material_mapping.get(class_name)
# 辦公場景
elif scene_type and scene_type in ["office_workspace", "meeting_room", "conference_room"]:
material_mapping = {
"chair": "office",
"dining table": "conference", # 在辦公環境中,餐桌通常是會議桌
"laptop": "modern",
"book": "reference"
}
return material_mapping.get(class_name)
# 客廳場景
elif scene_type and scene_type in ["living_room"]:
material_mapping = {
"couch": "comfortable",
"chair": "accent",
"tv": "large",
"vase": "decorative"
}
return material_mapping.get(class_name)
# 室外場景
elif scene_type and scene_type in ["city_street", "park_area", "parking_lot"]:
material_mapping = {
"car": "parked",
"person": "walking",
"bicycle": "stationed"
}
return material_mapping.get(class_name)
# 如果沒有特定的場景映射,返回通用描述符
generic_mapping = {
"chair": "comfortable",
"dining table": "sturdy",
"car": "parked",
"person": "present"
}
return generic_mapping.get(class_name)
def _get_spatial_arrangement_descriptor(self, class_name: str, scene_type: Optional[str],
detected_objects: Optional[List[Dict]],
count: int) -> Optional[str]:
"""
分析物件的空間排列模式並生成相應描述
這個方法通過分析物件的位置分布來判斷排列模式,
然後根據物件類型和場景生成適當的空間描述
Args:
class_name: 物件類別名稱
scene_type: 場景類型
detected_objects: 該類型的所有檢測物件
count: 物件數量
Returns:
Optional[str]: 空間排列描述,如果無法分析則返回None
"""
if not detected_objects or len(detected_objects) < 2:
return None
try:
# 提取物件的標準化位置
positions = []
for obj in detected_objects:
center = obj.get("normalized_center", [0.5, 0.5])
if isinstance(center, (list, tuple)) and len(center) >= 2:
positions.append(center)
if len(positions) < 2:
return None
# 分析排列模式
arrangement_pattern = self._analyze_arrangement_pattern(positions)
# 根據物件類型和場景生成描述
return self._generate_arrangement_description(class_name, scene_type,
arrangement_pattern, count)
except Exception as e:
self.logger.warning(f"Error analyzing spatial arrangement: {str(e)}")
return None
def _analyze_arrangement_pattern(self, positions: List[List[float]]) -> str:
"""
分析位置點的排列模式
這個方法使用簡單的幾何分析來判斷物件的排列類型,
幫助我們理解物件在空間中的組織方式
Args:
positions: 標準化的位置座標列表
Returns:
str: 排列模式類型(linear, clustered, scattered, circular等)
"""
import numpy as np
if len(positions) < 2:
return "single"
# 轉換為numpy陣列便於計算
pos_array = np.array(positions)
# 計算位置的分布特徵
x_coords = pos_array[:, 0]
y_coords = pos_array[:, 1]
# 分析x和y方向的變異程度
x_variance = np.var(x_coords)
y_variance = np.var(y_coords)
# 計算物件間的平均距離
distances = []
for i in range(len(positions)):
for j in range(i + 1, len(positions)):
dist = np.sqrt((positions[i][0] - positions[j][0])**2 +
(positions[i][1] - positions[j][1])**2)
distances.append(dist)
avg_distance = np.mean(distances) if distances else 0
distance_variance = np.var(distances) if distances else 0
# 判斷排列模式
if len(positions) >= 4 and self._is_circular_pattern(positions):
return "circular"
elif x_variance < 0.05 or y_variance < 0.05: # 一個方向變異很小
return "linear"
elif avg_distance < 0.3 and distance_variance < 0.02: # 物件聚集且距離相近
return "clustered"
elif avg_distance > 0.6: # 物件分散
return "scattered"
elif distance_variance < 0.03: # 距離一致,可能是規則排列
return "regular"
else:
return "distributed"
def _is_circular_pattern(self, positions: List[List[float]]) -> bool:
"""
檢查位置是否形成圓形或環形排列
Args:
positions: 位置座標列表
Returns:
bool: 是否為圓形排列
"""
import numpy as np
if len(positions) < 4:
return False
try:
pos_array = np.array(positions)
# 計算中心點
center_x = np.mean(pos_array[:, 0])
center_y = np.mean(pos_array[:, 1])
# 計算每個點到中心的距離
distances_to_center = []
for pos in positions:
dist = np.sqrt((pos[0] - center_x)**2 + (pos[1] - center_y)**2)
distances_to_center.append(dist)
# 如果所有距離都相近,可能是圓形排列
distance_variance = np.var(distances_to_center)
return distance_variance < 0.05 and np.mean(distances_to_center) > 0.2
except:
return False
def _generate_arrangement_description(self, class_name: str, scene_type: Optional[str],
arrangement_pattern: str, count: int) -> Optional[str]:
"""
根據物件類型、場景和排列模式生成空間描述
這個方法將抽象的排列模式轉換為自然語言描述,
並根據具體的物件類型和場景語境進行定制
Args:
class_name: 物件類別名稱
scene_type: 場景類型
arrangement_pattern: 排列模式
count: 物件數量
Returns:
Optional[str]: 生成的空間排列描述
"""
# 基於物件類型的描述模板
arrangement_templates = {
"chair": {
"linear": "arranged in a row",
"clustered": "grouped together for conversation",
"circular": "arranged around the table",
"scattered": "positioned throughout the space",
"regular": "evenly spaced",
"distributed": "thoughtfully positioned"
},
"dining table": {
"linear": "aligned to create a unified dining space",
"clustered": "grouped to form intimate dining areas",
"scattered": "distributed to optimize space flow",
"regular": "systematically positioned",
"distributed": "strategically placed"
},
"car": {
"linear": "parked in sequence",
"clustered": "grouped in the parking area",
"scattered": "distributed throughout the lot",
"regular": "neatly parked",
"distributed": "positioned across the area"
},
"person": {
"linear": "moving in a line",
"clustered": "gathered together",
"circular": "forming a circle",
"scattered": "spread across the area",
"distributed": "positioned throughout the scene"
}
}
# 獲取對應的描述模板
if class_name in arrangement_templates:
template_dict = arrangement_templates[class_name]
base_description = template_dict.get(arrangement_pattern, "positioned in the scene")
else:
# 通用的排列描述
generic_templates = {
"linear": "arranged in a line",
"clustered": "grouped together",
"circular": "arranged in a circular pattern",
"scattered": "distributed across the space",
"regular": "evenly positioned",
"distributed": "thoughtfully placed"
}
base_description = generic_templates.get(arrangement_pattern, "positioned in the scene")
return base_description
def _get_single_object_feature(self, class_name: str, scene_type: Optional[str],
detected_objects: Optional[List[Dict]]) -> Optional[str]:
"""
為單個物件生成特徵描述符
當只有一個物件時,我們可以提供更具體的位置或功能描述
Args:
class_name: 物件類別名稱
scene_type: 場景類型
detected_objects: 檢測物件(單個)
Returns:
Optional[str]: 特徵描述符
"""
if not detected_objects or len(detected_objects) != 1:
return None
obj = detected_objects[0]
region = obj.get("region", "").lower()
# 基於位置的描述
if "center" in region:
if class_name == "dining table":
return "central"
elif class_name == "chair":
return "centrally placed"
elif "corner" in region or "left" in region or "right" in region:
return "positioned"
# 基於場景的功能描述
if scene_type and scene_type in ["dining_area", "restaurant"]:
if class_name == "chair":
return "dining"
elif class_name == "vase":
return "decorative"
return None
def _get_plural_form(self, word: str) -> str:
"""
獲取詞彙的複數形式
Args:
word: 單數詞彙
Returns:
str: 複數形式
"""
try:
# 特殊複數形式
irregular_plurals = {
'person': 'people',
'child': 'children',
'foot': 'feet',
'tooth': 'teeth',
'mouse': 'mice',
'man': 'men',
'woman': 'women'
}
if word.lower() in irregular_plurals:
return irregular_plurals[word.lower()]
# 規則複數形式
if word.endswith(('s', 'sh', 'ch', 'x', 'z')):
return word + 'es'
elif word.endswith('y') and word[-2] not in 'aeiou':
return word[:-1] + 'ies'
elif word.endswith('f'):
return word[:-1] + 'ves'
elif word.endswith('fe'):
return word[:-2] + 'ves'
else:
return word + 's'
except Exception as e:
self.logger.warning(f"Error getting plural form for '{word}': {str(e)}")
return word + 's'
def _normalize_object_class_name(self, class_name: str) -> str:
"""
標準化物件類別名稱,確保輸出自然語言格式
Args:
class_name: 原始類別名稱
Returns:
str: 標準化後的類別名稱
"""
try:
if not class_name or not isinstance(class_name, str):
return "object"
# 移除可能的技術性前綴或後綴
import re
normalized = re.sub(r'^(class_|id_|type_)', '', class_name.lower())
normalized = re.sub(r'(_class|_id|_type)$', '', normalized)
# 將下劃線和連字符替換為空格
normalized = normalized.replace('_', ' ').replace('-', ' ')
# 移除多餘空格
normalized = ' '.join(normalized.split())
# 特殊類別名稱的標準化映射
class_name_mapping = {
'traffic light': 'traffic light',
'stop sign': 'stop sign',
'fire hydrant': 'fire hydrant',
'dining table': 'dining table',
'potted plant': 'potted plant',
'tv monitor': 'television',
'cell phone': 'mobile phone',
'wine glass': 'wine glass',
'hot dog': 'hot dog',
'teddy bear': 'teddy bear',
'hair drier': 'hair dryer',
'toothbrush': 'toothbrush'
}
return class_name_mapping.get(normalized, normalized)
except Exception as e:
self.logger.warning(f"Error normalizing class name '{class_name}': {str(e)}")
return class_name if isinstance(class_name, str) else "object"
def generate_basic_details(self, scene_type: str, detected_objects: List[Dict]) -> str:
"""
當模板不可用時生成基本詳細信息
Args:
scene_type: 識別的場景類型
detected_objects: 檢測到的物件列表
Returns:
str: 基本場景詳細信息
"""
try:
# 處理特定場景類型的自定義邏輯
if scene_type == "living_room":
tv_objs = [obj for obj in detected_objects if obj.get("class_id") == 62] # TV
sofa_objs = [obj for obj in detected_objects if obj.get("class_id") == 57] # Sofa
if tv_objs and sofa_objs:
tv_region = tv_objs[0].get("region", "center")
sofa_region = sofa_objs[0].get("region", "center")
arrangement = f"The TV is in the {tv_region.replace('_', ' ')} of the image, "
arrangement += f"while the sofa is in the {sofa_region.replace('_', ' ')}. "
return f"{arrangement}This appears to be a space designed for relaxation and entertainment."
elif scene_type == "bedroom":
bed_objs = [obj for obj in detected_objects if obj.get("class_id") == 59] # Bed
if bed_objs:
bed_region = bed_objs[0].get("region", "center")
extra_items = []
for obj in detected_objects:
if obj.get("class_id") == 74: # Clock
extra_items.append("clock")
elif obj.get("class_id") == 73: # Book
extra_items.append("book")
extras = ""
if extra_items:
extras = f" There is also a {' and a '.join(extra_items)} visible."
return f"The bed is located in the {bed_region.replace('_', ' ')} of the image.{extras}"
elif scene_type in ["dining_area", "kitchen"]:
# 計算食物和餐飲相關物品
food_items = []
for obj in detected_objects:
if obj.get("class_id") in [39, 41, 42, 43, 44, 45]: # 廚房物品
food_items.append(obj.get("class_name", "kitchen item"))
food_str = ""
if food_items:
unique_items = list(set(food_items))
if len(unique_items) <= 3:
food_str = f" with {', '.join(unique_items)}"
else:
food_str = f" with {', '.join(unique_items[:3])} and other items"
return f"{food_str}."
elif scene_type == "city_street":
# 計算人員和車輛
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
vehicle_count = len([obj for obj in detected_objects
if obj.get("class_id") in [1, 2, 3, 5, 7]]) # Bicycle, car, motorbike, bus, truck
traffic_desc = ""
if people_count > 0 and vehicle_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'} and "
traffic_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif people_count > 0:
traffic_desc = f" with {people_count} {'people' if people_count > 1 else 'person'}"
elif vehicle_count > 0:
traffic_desc = f" with {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
return f"{traffic_desc}."
elif scene_type == "asian_commercial_street":
# 尋找關鍵城市元素
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
vehicle_count = len([obj for obj in detected_objects if obj.get("class_id") in [1, 2, 3]])
# 分析行人分布
people_positions = []
for obj in detected_objects:
if obj.get("class_id") == 0: # Person
people_positions.append(obj.get("normalized_center", (0.5, 0.5)))
# 檢查人員是否沿線分布(表示步行路徑)
structured_path = False
if len(people_positions) >= 3:
# 簡化檢查 - 查看多個人員的y坐標是否相似
y_coords = [pos[1] for pos in people_positions]
y_mean = sum(y_coords) / len(y_coords)
y_variance = sum((y - y_mean)**2 for y in y_coords) / len(y_coords)
if y_variance < 0.05: # 低變異數表示線性排列
structured_path = True
street_desc = "A commercial street with "
if people_count > 0:
street_desc += f"{people_count} {'pedestrians' if people_count > 1 else 'pedestrian'}"
if vehicle_count > 0:
street_desc += f" and {vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
elif vehicle_count > 0:
street_desc += f"{vehicle_count} {'vehicles' if vehicle_count > 1 else 'vehicle'}"
else:
street_desc += "various commercial elements"
if structured_path:
street_desc += ". The pedestrians appear to be following a defined walking path"
# 添加文化元素
street_desc += ". The signage and architectural elements suggest an Asian urban setting."
return street_desc
# 默認通用描述
return "The scene contains various elements characteristic of this environment."
except Exception as e:
self.logger.warning(f"Error generating basic details for scene_type '{scene_type}': {str(e)}")
return "The scene contains various elements characteristic of this environment."
def generate_placeholder_content(self, placeholder: str, detected_objects: List[Dict], scene_type: str) -> str:
"""
為模板佔位符生成內容
Args:
placeholder: 模板佔位符
detected_objects: 檢測到的物件列表
scene_type: 場景類型
Returns:
str: 生成的佔位符內容
"""
try:
# 處理不同類型的佔位符與自定義邏輯
if placeholder == "furniture":
# 提取家具物品
furniture_ids = [56, 57, 58, 59, 60, 61] # 家具類別ID示例
furniture_objects = [obj for obj in detected_objects if obj.get("class_id") in furniture_ids]
if furniture_objects:
furniture_names = []
for obj in furniture_objects[:3]:
raw_name = obj.get("class_name", "furniture")
normalized_name = self._normalize_object_class_name(raw_name)
furniture_names.append(normalized_name)
unique_names = list(set(furniture_names))
if len(unique_names) == 1:
return unique_names[0]
elif len(unique_names) == 2:
return f"{unique_names[0]} and {unique_names[1]}"
else:
return ", ".join(unique_names[:-1]) + f", and {unique_names[-1]}"
return "various furniture items"
elif placeholder == "electronics":
# 提取電子物品
electronics_ids = [62, 63, 64, 65, 66, 67, 68, 69, 70] # 電子設備類別ID示例
electronics_objects = [obj for obj in detected_objects if obj.get("class_id") in electronics_ids]
if electronics_objects:
electronics_names = [obj.get("class_name", "electronic device") for obj in electronics_objects[:3]]
return ", ".join(set(electronics_names))
return "electronic devices"
elif placeholder == "people_count":
# 計算人數
people_count = len([obj for obj in detected_objects if obj.get("class_id") == 0])
if people_count == 0:
return "no people"
elif people_count == 1:
return "one person"
elif people_count < 5:
return f"{people_count} people"
else:
return "several people"
elif placeholder == "seating":
# 提取座位物品
seating_ids = [56, 57] # chair, sofa
seating_objects = [obj for obj in detected_objects if obj.get("class_id") in seating_ids]
if seating_objects:
seating_names = [obj.get("class_name", "seating") for obj in seating_objects[:2]]
return ", ".join(set(seating_names))
return "seating arrangements"
# 默認情況 - 空字符串
return ""
except Exception as e:
self.logger.warning(f"Error generating placeholder content for '{placeholder}': {str(e)}")
return ""
def describe_functional_zones(self, functional_zones: Dict) -> str:
"""
生成場景功能區域的描述,優化處理行人區域、人數統計和物品重複問題
Args:
functional_zones: 識別出的功能區域字典
Returns:
str: 功能區域描述
"""
try:
if not functional_zones:
return ""
# 處理不同類型的 functional_zones 參數
if isinstance(functional_zones, list):
# 如果是列表,轉換為字典格式
zones_dict = {}
for i, zone in enumerate(functional_zones):
if isinstance(zone, dict) and 'name' in zone:
zone_name = self._normalize_zone_name(zone['name'])
else:
zone_name = f"functional area {i+1}"
zones_dict[zone_name] = zone if isinstance(zone, dict) else {"description": str(zone)}
functional_zones = zones_dict
elif not isinstance(functional_zones, dict):
return ""
# 標準化所有區域鍵名,移除內部標識符格式
normalized_zones = {}
for zone_key, zone_data in functional_zones.items():
normalized_key = self._normalize_zone_name(zone_key)
normalized_zones[normalized_key] = zone_data
functional_zones = normalized_zones
# 計算場景中的總人數
total_people_count = 0
people_by_zone = {}
# 計算每個區域的人數並累計總人數
for zone_name, zone_info in functional_zones.items():
if "objects" in zone_info:
zone_people_count = zone_info["objects"].count("person")
people_by_zone[zone_name] = zone_people_count
total_people_count += zone_people_count
# 分類區域為行人區域和其他區域
pedestrian_zones = []
other_zones = []
for zone_name, zone_info in functional_zones.items():
# 檢查是否是行人相關區域
if any(keyword in zone_name.lower() for keyword in ["pedestrian", "crossing", "people"]):
pedestrian_zones.append((zone_name, zone_info))
else:
other_zones.append((zone_name, zone_info))
# 獲取最重要的行人區域和其他區域
main_pedestrian_zones = sorted(pedestrian_zones,
key=lambda z: people_by_zone.get(z[0], 0),
reverse=True)[:1] # 最多1個主要行人區域
top_other_zones = sorted(other_zones,
key=lambda z: len(z[1].get("objects", [])),
reverse=True)[:2] # 最多2個其他區域
# 合併區域
top_zones = main_pedestrian_zones + top_other_zones
if not top_zones:
return ""
# 生成匯總描述
summary = ""
max_mentioned_people = 0 # 追蹤已經提到的最大人數
# 如果總人數顯著且還沒在主描述中提到,添加總人數描述
if total_people_count > 5:
summary = f"The scene contains a significant number of pedestrians ({total_people_count} people). "
max_mentioned_people = total_people_count # 更新已提到的最大人數
# 處理每個區域的描述,確保人數信息的一致性
processed_zones = []
for zone_name, zone_info in top_zones:
zone_desc = zone_info.get("description", "a functional zone")
zone_people_count = people_by_zone.get(zone_name, 0)
# 檢查描述中是否包含人數資訊
contains_people_info = "with" in zone_desc and ("person" in zone_desc.lower() or "people" in zone_desc.lower())
# 如果描述包含人數信息,且人數較小(小於已提到的最大人數),則修改描述
if contains_people_info and zone_people_count < max_mentioned_people:
parts = zone_desc.split("with")
if len(parts) > 1:
# 移除人數部分
zone_desc = parts[0].strip() + " area"
processed_zones.append((zone_name, {"description": zone_desc}))
# 根據處理後的區域數量生成最終描述
final_desc = ""
if len(processed_zones) == 1:
_, zone_info = processed_zones[0]
zone_desc = zone_info["description"]
final_desc = summary + f"The scene includes {zone_desc}."
elif len(processed_zones) == 2:
_, zone1_info = processed_zones[0]
_, zone2_info = processed_zones[1]
zone1_desc = zone1_info["description"]
zone2_desc = zone2_info["description"]
final_desc = summary + f"The scene is divided into two main areas: {zone1_desc} and {zone2_desc}."
else:
zones_desc = ["The scene contains multiple functional areas including"]
zone_descriptions = [z[1]["description"] for z in processed_zones]
# 格式化最終的多區域描述
if len(zone_descriptions) == 3:
formatted_desc = f"{zone_descriptions[0]}, {zone_descriptions[1]}, and {zone_descriptions[2]}"
else:
formatted_desc = ", ".join(zone_descriptions[:-1]) + f", and {zone_descriptions[-1]}"
final_desc = summary + f"{zones_desc[0]} {formatted_desc}."
return self.optimize_object_description(final_desc)
except Exception as e:
self.logger.warning(f"Error describing functional zones: {str(e)}")
return ""
def _normalize_zone_name(self, zone_name: str) -> str:
"""
將內部區域鍵名標準化為自然語言描述
Args:
zone_name: 原始區域名稱
Returns:
str: 標準化後的區域名稱
"""
try:
if not zone_name or not isinstance(zone_name, str):
return "functional area"
# 移除數字後綴(如 crossing_zone_1 -> crossing_zone)
import re
base_name = re.sub(r'_\d+$', '', zone_name)
# 將下劃線替換為空格
normalized = base_name.replace('_', ' ')
# 標準化常見的區域類型名稱
zone_type_mapping = {
'crossing zone': 'pedestrian crossing area',
'vehicle zone': 'vehicle movement area',
'pedestrian zone': 'pedestrian activity area',
'traffic zone': 'traffic flow area',
'waiting zone': 'waiting area',
'seating zone': 'seating area',
'dining zone': 'dining area',
'furniture zone': 'furniture arrangement area',
'electronics zone': 'electronics area',
'people zone': 'social activity area',
'functional area': 'activity area'
}
# 檢查是否有對應的標準化名稱
for pattern, replacement in zone_type_mapping.items():
if pattern in normalized.lower():
return replacement
# 如果沒有特定映射,使用通用格式
if 'zone' in normalized.lower():
normalized = normalized.replace('zone', 'area')
elif not any(keyword in normalized.lower() for keyword in ['area', 'space', 'region']):
normalized += ' area'
return normalized.strip()
except Exception as e:
self.logger.warning(f"Error normalizing zone name '{zone_name}': {str(e)}")
return "activity area"
def get_configuration(self) -> Dict[str, Any]:
"""
獲取當前配置參數
Returns:
Dict[str, Any]: 配置參數字典
"""
return {
"min_prominence_score": self.min_prominence_score,
"max_categories_to_return": self.max_categories_to_return,
"max_total_objects": self.max_total_objects,
"confidence_threshold_for_description": self.confidence_threshold_for_description
}
def update_configuration(self, **kwargs):
"""
更新配置參數
Args:
**kwargs: 要更新的配置參數
"""
try:
for key, value in kwargs.items():
if hasattr(self, key):
old_value = getattr(self, key)
setattr(self, key, value)
self.logger.info(f"Updated {key}: {old_value} -> {value}")
else:
self.logger.warning(f"Unknown configuration parameter: {key}")
except Exception as e:
self.logger.error(f"Error updating configuration: {str(e)}")
raise ObjectDescriptionError(f"Failed to update configuration: {str(e)}") from e
|