VisionScout / indoor_outdoor_classifier.py
DawnC's picture
Upload 59 files
e6a18b7 verified
import numpy as np
import logging
import traceback
from typing import Dict, Any, Optional, List
from configuration_manager import ConfigurationManager
class IndoorOutdoorClassifier:
"""
Classifies scenes as indoor or outdoor based on visual features and Places365 context.(判斷室內室外)
此class會融入PLACES365,使判斷更準確
This class implements sophisticated decision logic that combines multiple evidence sources
including visual scene analysis, structural features, and external scene classification
data to determine whether a scene is indoor or outdoor.
"""
def __init__(self, config_manager: ConfigurationManager):
"""
Initialize the indoor/outdoor classifier.
Args:
config_manager: Configuration manager instance for accessing thresholds and weights.
"""
self.config_manager = config_manager
self.logger = self._setup_logger()
# Internal threshold constants for Places365 confidence levels
self.P365_HIGH_CONF_THRESHOLD = 0.65
self.P365_MODERATE_CONF_THRESHOLD = 0.4
# 以下是絕對室內/室外的基本情況
self.DEFINITELY_OUTDOOR_KEYWORDS_P365 = [
"street", "road", "highway", "park", "beach", "mountain", "forest", "field",
"outdoor", "sky", "coast", "courtyard", "square", "plaza", "bridge",
"parking_lot", "playground", "stadium", "construction_site", "river", "ocean",
"desert", "garden", "trail", "intersection", "crosswalk", "sidewalk", "pathway",
"avenue", "boulevard", "downtown", "city_center", "market_outdoor"
]
self.DEFINITELY_INDOOR_KEYWORDS_P365 = [
"bedroom", "office", "kitchen", "library", "classroom", "conference_room", "living_room",
"bathroom", "hospital", "hotel_room", "cabin", "interior", "museum", "gallery",
"mall", "market_indoor", "basement", "corridor", "lobby", "restaurant_indoor",
"bar_indoor", "shop_indoor", "gym_indoor"
]
def _setup_logger(self) -> logging.Logger:
"""Set up logger for classification operations."""
logger = logging.getLogger(f"{__name__}.IndoorOutdoorClassifier")
if not logger.handlers:
handler = logging.StreamHandler()
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
return logger
def classify(self, features: Dict[str, Any], places365_info: Optional[Dict] = None) -> Dict[str, Any]:
"""
Classify scene as indoor or outdoor based on features and Places365 context.
Args:
features: Dictionary containing extracted image features.
places365_info: Optional Places365 classification information.
Returns:
Dictionary containing classification results including decision, probability,
feature contributions, and diagnostic information.
"""
try:
self.logger.debug("Starting indoor/outdoor classification")
# Initialize classification components
visual_score = 0.0
feature_contributions = {}
diagnostics = {}
# Extract Places365 information
p365_context = self._extract_places365_context(places365_info, diagnostics)
# Compute visual evidence score
visual_analysis = self._analyze_visual_evidence(features, diagnostics)
visual_score = visual_analysis["visual_score"]
feature_contributions.update(visual_analysis["contributions"])
# Incorporate Places365 influence
p365_analysis = self._analyze_places365_influence(
p365_context, visual_analysis.get("strong_sky_signal", False), diagnostics
)
p365_influence_score = p365_analysis["influence_score"]
if abs(p365_influence_score) > 0.01:
feature_contributions["places365_influence_score"] = round(p365_influence_score, 2)
# Calculate final score and probability
final_indoor_score = visual_score + p365_influence_score
classification_result = self._compute_final_classification(
final_indoor_score, visual_score, p365_influence_score, diagnostics
)
# Apply Places365 override if conditions are met
override_result = self._apply_places365_override(
classification_result, p365_context, diagnostics
)
# Ensure default values for missing contributions
self._ensure_default_contributions(feature_contributions)
# 最終結果
result = {
"is_indoor": override_result["is_indoor"],
"indoor_probability": override_result["indoor_probability"],
"indoor_score_raw": override_result["final_score"],
"feature_contributions": feature_contributions,
"diagnostics": diagnostics
}
self.logger.debug(f"Classification complete: indoor={result['is_indoor']}, "
f"probability={result['indoor_probability']:.3f}")
return result
except Exception as e:
self.logger.error(f"Error in indoor/outdoor classification: {str(e)}")
self.logger.error(f"Traceback: {traceback.format_exc()}")
return self._get_default_classification_result()
def _extract_places365_context(self, places365_info: Optional[Dict],
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Extract and validate Places365 context information."""
context = {
"mapped_scene": "unknown",
"is_indoor_from_classification": None,
"attributes": [],
"confidence": 0.0,
"is_indoor": None
}
if places365_info:
context["mapped_scene"] = places365_info.get('mapped_scene_type', 'unknown').lower()
context["attributes"] = [attr.lower() for attr in places365_info.get('attributes', [])]
context["confidence"] = places365_info.get('confidence', 0.0)
context["is_indoor_from_classification"] = places365_info.get('is_indoor_from_classification', None)
context["is_indoor"] = places365_info.get('is_indoor', None)
diagnostics["p365_context_received"] = (
f"P365 Scene: {context['mapped_scene']}, P365 SceneConf: {context['confidence']:.2f}, "
f"P365 DirectIndoor: {context['is_indoor_from_classification']}, "
f"P365 Attrs: {context['attributes']}"
)
return context
def _analyze_visual_evidence(self, features: Dict[str, Any],
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze visual evidence for indoor/outdoor classification."""
visual_score = 0.0
contributions = {}
strong_sky_signal = False
# Sky and openness analysis
sky_analysis = self._analyze_sky_evidence(features, diagnostics)
visual_score += sky_analysis["score"]
if sky_analysis["score"] != 0:
contributions["sky_openness_features_visual"] = round(sky_analysis["score"], 2)
strong_sky_signal = sky_analysis["strong_signal"]
# Enclosure and structural analysis
enclosure_analysis = self._analyze_enclosure_evidence(features, strong_sky_signal, diagnostics)
visual_score += enclosure_analysis["score"]
if enclosure_analysis["score"] != 0:
contributions["enclosure_features"] = round(enclosure_analysis["score"], 2)
# Brightness uniformity analysis
uniformity_analysis = self._analyze_brightness_uniformity(features, strong_sky_signal, diagnostics)
visual_score += uniformity_analysis["score"]
if uniformity_analysis["score"] != 0:
contributions["brightness_uniformity_contribution"] = round(uniformity_analysis["score"], 2)
# Light source analysis
light_analysis = self._analyze_light_sources(features, strong_sky_signal, diagnostics)
visual_score += light_analysis["score"]
if light_analysis["score"] != 0:
contributions["light_source_features"] = round(light_analysis["score"], 2)
# Color atmosphere analysis
atmosphere_analysis = self._analyze_color_atmosphere(features, strong_sky_signal, diagnostics)
visual_score += atmosphere_analysis["score"]
if atmosphere_analysis["score"] != 0:
contributions["warm_atmosphere_indoor_visual_contrib"] = round(atmosphere_analysis["score"], 2)
# Home environment pattern analysis
home_analysis = self._analyze_home_environment_pattern(features, strong_sky_signal, diagnostics)
visual_score += home_analysis["score"]
if home_analysis["score"] != 0:
contributions["home_environment_pattern_visual"] = round(home_analysis["score"], 2)
# Aerial street pattern analysis
aerial_analysis = self._analyze_aerial_street_pattern(features, strong_sky_signal, contributions, diagnostics)
visual_score += aerial_analysis["score"]
if aerial_analysis["score"] != 0:
contributions["aerial_street_pattern_visual"] = round(aerial_analysis["score"], 2)
diagnostics["visual_indoor_score_subtotal"] = round(visual_score, 3)
return {
"visual_score": visual_score,
"contributions": contributions,
"strong_sky_signal": strong_sky_signal
}
def _analyze_sky_evidence(self, features: Dict[str, Any],
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze sky-related evidence for outdoor classification."""
sky_evidence_score = 0.0
strong_sky_signal = False
# Extract relevant features
sky_blue_dominance = features.get("sky_region_blue_dominance", 0.0)
sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
texture_complexity = features.get("top_region_texture_complexity", 0.5)
openness_top_edge = features.get("openness_top_edge", 0.5)
# Get thresholds
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
# Strong blue sky signal
if sky_blue_dominance > thresholds.sky_blue_dominance_thresh:
sky_evidence_score -= weights.sky_blue_dominance_w * sky_blue_dominance
diagnostics["sky_detection_reason_visual"] = f"Visual: Strong sky-like blue ({sky_blue_dominance:.2f})"
strong_sky_signal = True
# Bright top region with low texture
elif (sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_strong_thresh', 1.35) and
texture_complexity < getattr(thresholds, 'sky_texture_complexity_clear_thresh', 0.25)):
outdoor_push = weights.sky_brightness_ratio_w * (sky_brightness_ratio - 1.0)
sky_evidence_score -= outdoor_push
sky_evidence_score -= weights.sky_texture_w
diagnostics["sky_detection_reason_visual"] = (
f"Visual: Top brighter (ratio:{sky_brightness_ratio:.2f}) & low texture."
)
strong_sky_signal = True
# High top edge openness
elif openness_top_edge > getattr(thresholds, 'openness_top_strong_thresh', 0.80):
sky_evidence_score -= weights.openness_top_w * openness_top_edge
diagnostics["sky_detection_reason_visual"] = (
f"Visual: Very high top edge openness ({openness_top_edge:.2f})."
)
strong_sky_signal = True
# Weak sky signal (cloudy conditions)
elif (not strong_sky_signal and
texture_complexity < getattr(thresholds, 'sky_texture_complexity_cloudy_thresh', 0.20) and
sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_cloudy_thresh', 0.95)):
sky_evidence_score -= weights.sky_texture_w * (1.0 - texture_complexity) * 0.5
diagnostics["sky_detection_reason_visual"] = (
f"Visual: Weak sky signal (low texture, brightish top: {texture_complexity:.2f}), less weight."
)
if strong_sky_signal:
diagnostics["strong_sky_signal_visual_detected"] = True
return {
"score": sky_evidence_score,
"strong_signal": strong_sky_signal
}
def _analyze_enclosure_evidence(self, features: Dict[str, Any], strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze enclosure evidence for indoor classification."""
enclosure_score = 0.0
# Extract features
ceiling_likelihood = features.get("ceiling_likelihood", 0.0)
boundary_clarity = features.get("boundary_clarity", 0.0)
texture_complexity = features.get("top_region_texture_complexity", 0.5)
openness_top_edge = features.get("openness_top_edge", 0.5)
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
override_factors = self.config_manager.override_factors
# Ceiling likelihood analysis
if ceiling_likelihood > thresholds.ceiling_likelihood_thresh:
current_ceiling_score = weights.ceiling_likelihood_w * ceiling_likelihood
if strong_sky_signal:
current_ceiling_score *= override_factors.sky_override_factor_ceiling
enclosure_score += current_ceiling_score
diagnostics["indoor_reason_ceiling_visual"] = (
f"Visual Ceiling: {ceiling_likelihood:.2f}, ScoreCont: {current_ceiling_score:.2f}"
)
# Boundary clarity analysis
if boundary_clarity > thresholds.boundary_clarity_thresh:
current_boundary_score = weights.boundary_clarity_w * boundary_clarity
if strong_sky_signal:
current_boundary_score *= override_factors.sky_override_factor_boundary
enclosure_score += current_boundary_score
diagnostics["indoor_reason_boundary_visual"] = (
f"Visual Boundary: {boundary_clarity:.2f}, ScoreCont: {current_boundary_score:.2f}"
)
# Complex urban top detection
if (not strong_sky_signal and texture_complexity > 0.7 and
openness_top_edge < 0.3 and ceiling_likelihood < 0.35):
diagnostics["complex_urban_top_visual"] = True
if boundary_clarity > 0.5:
enclosure_score *= 0.5
diagnostics["reduced_enclosure_for_urban_top_visual"] = True
return {"score": enclosure_score}
def _analyze_brightness_uniformity(self, features: Dict[str, Any], strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze brightness uniformity patterns."""
uniformity_score = 0.0
# Calculate brightness uniformity
brightness_std = features.get("brightness_std", 50.0)
avg_brightness = features.get("avg_brightness", 100.0)
brightness_uniformity = 1.0 - min(1.0, brightness_std / max(avg_brightness, 1e-5))
shadow_clarity = features.get("shadow_clarity_score", 0.5)
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
override_factors = self.config_manager.override_factors
# High uniformity (indoor indicator)
if brightness_uniformity > thresholds.brightness_uniformity_thresh_indoor:
uniformity_score = weights.brightness_uniformity_w * brightness_uniformity
if strong_sky_signal:
uniformity_score *= override_factors.sky_override_factor_uniformity
# Low uniformity (potential outdoor indicator)
elif brightness_uniformity < thresholds.brightness_uniformity_thresh_outdoor:
if shadow_clarity > 0.65:
uniformity_score = -weights.brightness_non_uniformity_outdoor_w * (1.0 - brightness_uniformity)
elif not strong_sky_signal:
uniformity_score = weights.brightness_non_uniformity_indoor_penalty_w * (1.0 - brightness_uniformity)
return {"score": uniformity_score}
def _analyze_light_sources(self, features: Dict[str, Any], strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze artificial light source patterns."""
light_score = 0.0
# Extract light features
indoor_light_score = features.get("indoor_light_score", 0.0)
circular_light_count = features.get("circular_light_count", 0)
bright_spot_count = features.get("bright_spot_count", 0)
avg_brightness = features.get("avg_brightness", 100.0)
gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0)
edges_density = features.get("edges_density", 0.0)
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
override_factors = self.config_manager.override_factors
# Circular lights detection
if circular_light_count >= 1 and not strong_sky_signal:
light_score += weights.circular_lights_w * circular_light_count
# Indoor light score
elif indoor_light_score > 0.55 and not strong_sky_signal:
light_score += weights.indoor_light_score_w * indoor_light_score
# Many bright spots in dim scenes
elif (bright_spot_count > thresholds.many_bright_spots_thresh and
avg_brightness < thresholds.dim_scene_for_spots_thresh and
not strong_sky_signal):
light_score += weights.many_bright_spots_indoor_w * min(bright_spot_count / 10.0, 1.5)
# Street structure detection
is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15
if is_likely_street_structure and bright_spot_count > 3 and not strong_sky_signal:
light_score *= 0.2
diagnostics["street_lights_heuristic_visual"] = True
elif strong_sky_signal:
light_score *= override_factors.sky_override_factor_lights
return {"score": light_score}
def _analyze_color_atmosphere(self, features: Dict[str, Any], strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze color atmosphere patterns."""
atmosphere_score = 0.0
# Extract features
color_atmosphere = features.get("color_atmosphere", "neutral")
avg_brightness = features.get("avg_brightness", 100.0)
avg_saturation = features.get("avg_saturation", 100.0)
gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0)
edges_density = features.get("edges_density", 0.0)
indoor_light_score = features.get("indoor_light_score", 0.0)
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
# Warm atmosphere analysis
if (color_atmosphere == "warm" and
avg_brightness < thresholds.warm_indoor_max_brightness_thresh):
# Check exclusion conditions
is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15
is_complex_urban_top = diagnostics.get("complex_urban_top_visual", False)
if (not strong_sky_signal and not is_complex_urban_top and
not (is_likely_street_structure and avg_brightness > 80) and
avg_saturation < 160):
if indoor_light_score > 0.05:
atmosphere_score = weights.warm_atmosphere_indoor_w
return {"score": atmosphere_score}
def _analyze_home_environment_pattern(self, features: Dict[str, Any], strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze home/residential environment patterns."""
home_score = 0.0
if strong_sky_signal:
diagnostics["skipped_home_env_visual_due_to_sky"] = True
return {"score": 0.0}
# Calculate bedroom/home indicators
bedroom_indicators = 0.0
brightness_uniformity = features.get("brightness_uniformity", 0.0)
boundary_clarity = features.get("boundary_clarity", 0.0)
ceiling_likelihood = features.get("ceiling_likelihood", 0.0)
bright_spot_count = features.get("bright_spot_count", 0)
circular_light_count = features.get("circular_light_count", 0)
warm_ratio = features.get("warm_ratio", 0.0)
avg_saturation = features.get("avg_saturation", 100.0)
# Accumulate indicators
if brightness_uniformity > 0.65 and boundary_clarity > 0.40:
bedroom_indicators += 1.1
if ceiling_likelihood > 0.35 and (bright_spot_count > 0 or circular_light_count > 0):
bedroom_indicators += 1.1
if warm_ratio > 0.55 and brightness_uniformity > 0.65:
bedroom_indicators += 1.0
if brightness_uniformity > 0.70 and avg_saturation < 60:
bedroom_indicators += 0.7
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
# Apply scoring based on indicator strength
if bedroom_indicators >= thresholds.home_pattern_thresh_strong:
home_score = weights.home_env_strong_w
elif bedroom_indicators >= thresholds.home_pattern_thresh_moderate:
home_score = weights.home_env_moderate_w
if bedroom_indicators > 0:
diagnostics["home_environment_pattern_visual_indicators"] = round(bedroom_indicators, 1)
return {"score": home_score}
def _analyze_aerial_street_pattern(self, features: Dict[str, Any], strong_sky_signal: bool,
contributions: Dict[str, float],
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze aerial view street patterns."""
aerial_score = 0.0
# Extract features
sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
texture_complexity = features.get("top_region_texture_complexity", 0.5)
avg_brightness = features.get("avg_brightness", 100.0)
# Get configuration
thresholds = self.config_manager.indoor_outdoor_thresholds
weights = self.config_manager.weighting_factors
# Aerial street pattern detection
if (sky_brightness_ratio < thresholds.aerial_top_dark_ratio_thresh and
texture_complexity > thresholds.aerial_top_complex_thresh and
avg_brightness > thresholds.aerial_min_avg_brightness_thresh and
not strong_sky_signal):
aerial_score = -weights.aerial_street_w
diagnostics["aerial_street_pattern_visual_detected"] = True
# Reduce enclosure features if aerial pattern detected
if ("enclosure_features" in contributions and
contributions["enclosure_features"] > 0):
reduction_factor = self.config_manager.override_factors.aerial_enclosure_reduction_factor
positive_enclosure_score = max(0, contributions["enclosure_features"])
reduction_amount = positive_enclosure_score * reduction_factor
contributions["enclosure_features_reduced_by_aerial"] = round(-reduction_amount, 2)
contributions["enclosure_features"] = round(
contributions["enclosure_features"] - reduction_amount, 2
)
return {"score": aerial_score}
def _analyze_places365_influence(self, p365_context: Dict[str, Any],
strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze Places365 influence on classification."""
p365_influence_score = 0.0
if not p365_context or p365_context["confidence"] < self.P365_MODERATE_CONF_THRESHOLD:
return {"influence_score": 0.0}
# Places365 direct classification influence
if p365_context["is_indoor_from_classification"] is not None:
p365_influence_score += self._compute_direct_classification_influence(
p365_context, strong_sky_signal, diagnostics
)
# Places365 scene context influence
elif p365_context["confidence"] >= self.P365_MODERATE_CONF_THRESHOLD:
p365_influence_score += self._compute_scene_context_influence(
p365_context, strong_sky_signal, diagnostics
)
# Places365 attributes influence
if p365_context["attributes"] and p365_context["confidence"] > 0.5:
p365_influence_score += self._compute_attributes_influence(
p365_context, strong_sky_signal, diagnostics
)
# High confidence street scene boost
if (p365_context["confidence"] >= 0.85 and
any(kw in p365_context["mapped_scene"] for kw in ["intersection", "crosswalk", "street", "road"])):
additional_outdoor_push = -3.0 * p365_context["confidence"]
p365_influence_score += additional_outdoor_push
diagnostics["p365_street_scene_boost"] = (
f"Additional outdoor push: {additional_outdoor_push:.2f} for street scene: "
f"{p365_context['mapped_scene']}"
)
self.logger.debug(f"High confidence street scene detected - "
f"{p365_context['mapped_scene']} with confidence {p365_context['confidence']:.3f}")
return {"influence_score": p365_influence_score}
def _compute_direct_classification_influence(self, p365_context: Dict[str, Any],
strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> float:
"""Compute influence from Places365 direct indoor/outdoor classification."""
P365_DIRECT_INDOOR_WEIGHT = 3.5
P365_DIRECT_OUTDOOR_WEIGHT = 4.0
confidence = p365_context["confidence"]
is_indoor = p365_context["is_indoor_from_classification"]
mapped_scene = p365_context["mapped_scene"]
if is_indoor is True:
current_contrib = P365_DIRECT_INDOOR_WEIGHT * confidence
diagnostics["p365_influence_source"] = (
f"P365_DirectIndoor(True,Conf:{confidence:.2f},Scene:{mapped_scene})"
)
else:
current_contrib = -P365_DIRECT_OUTDOOR_WEIGHT * confidence
diagnostics["p365_influence_source"] = (
f"P365_DirectIndoor(False,Conf:{confidence:.2f},Scene:{mapped_scene})"
)
# Apply sky override for indoor predictions
if strong_sky_signal and current_contrib > 0:
sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
current_contrib *= sky_override_factor
diagnostics["p365_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}"
return current_contrib
def _compute_scene_context_influence(self, p365_context: Dict[str, Any],
strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> float:
"""Compute influence from Places365 scene context."""
P365_SCENE_CONTEXT_INDOOR_WEIGHT = 2.0
P365_SCENE_CONTEXT_OUTDOOR_WEIGHT = 2.5
confidence = p365_context["confidence"]
mapped_scene = p365_context["mapped_scene"]
is_def_indoor = any(kw in mapped_scene for kw in self.DEFINITELY_INDOOR_KEYWORDS_P365)
is_def_outdoor = any(kw in mapped_scene for kw in self.DEFINITELY_OUTDOOR_KEYWORDS_P365)
current_contrib = 0.0
if is_def_indoor and not is_def_outdoor:
current_contrib = P365_SCENE_CONTEXT_INDOOR_WEIGHT * confidence
diagnostics["p365_influence_source"] = (
f"P365_SceneContext(Indoor: {mapped_scene}, Conf:{confidence:.2f})"
)
elif is_def_outdoor and not is_def_indoor:
current_contrib = -P365_SCENE_CONTEXT_OUTDOOR_WEIGHT * confidence
diagnostics["p365_influence_source"] = (
f"P365_SceneContext(Outdoor: {mapped_scene}, Conf:{confidence:.2f})"
)
# Apply sky override for indoor predictions
if strong_sky_signal and current_contrib > 0:
sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
current_contrib *= sky_override_factor
diagnostics["p365_context_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}"
return current_contrib
def _compute_attributes_influence(self, p365_context: Dict[str, Any],
strong_sky_signal: bool,
diagnostics: Dict[str, Any]) -> float:
"""Compute influence from Places365 attributes."""
P365_ATTRIBUTE_INDOOR_WEIGHT = 1.0
P365_ATTRIBUTE_OUTDOOR_WEIGHT = 1.5
confidence = p365_context["confidence"]
attributes = p365_context["attributes"]
attr_contrib = 0.0
if "indoor" in attributes and "outdoor" not in attributes:
attr_contrib += P365_ATTRIBUTE_INDOOR_WEIGHT * (confidence * 0.5)
diagnostics["p365_attr_influence"] = f"+{attr_contrib:.2f} (indoor attr)"
elif "outdoor" in attributes and "indoor" not in attributes:
attr_contrib -= P365_ATTRIBUTE_OUTDOOR_WEIGHT * (confidence * 0.5)
diagnostics["p365_attr_influence"] = f"{attr_contrib:.2f} (outdoor attr)"
# Apply sky override for indoor attributes
if strong_sky_signal and attr_contrib > 0:
sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
attr_contrib *= sky_override_factor
return attr_contrib
def _compute_final_classification(self, final_indoor_score: float, visual_score: float,
p365_influence_score: float, diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Compute final classification probability and decision."""
# Record score breakdown
diagnostics["final_indoor_score_value"] = round(final_indoor_score, 3)
diagnostics["final_score_breakdown"] = (
f"VisualScore: {visual_score:.2f}, P365Influence: {p365_influence_score:.2f}"
)
# Apply sigmoid transformation
sigmoid_scale = self.config_manager.algorithm_parameters.indoor_score_sigmoid_scale
indoor_probability = 1 / (1 + np.exp(-final_indoor_score * sigmoid_scale))
# Make decision
decision_threshold = self.config_manager.algorithm_parameters.indoor_decision_threshold
is_indoor = indoor_probability > decision_threshold
return {
"is_indoor": is_indoor,
"indoor_probability": indoor_probability,
"final_score": final_indoor_score
}
def _apply_places365_override(self, classification_result: Dict[str, Any],
p365_context: Dict[str, Any],
diagnostics: Dict[str, Any]) -> Dict[str, Any]:
"""Apply Places365 high-confidence override if conditions are met."""
is_indoor = classification_result["is_indoor"]
indoor_probability = classification_result["indoor_probability"]
final_score = classification_result["final_score"]
# Check for override conditions
if not p365_context or p365_context["confidence"] < 0.5:
diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3)
diagnostics["final_is_indoor_decision"] = bool(is_indoor)
return classification_result
p365_is_indoor_decision = p365_context.get("is_indoor", None)
confidence = p365_context["confidence"]
self.logger.debug(f"Override check: is_indoor={is_indoor}, p365_conf={confidence}, "
f"p365_raw_is_indoor={p365_is_indoor_decision}")
# Apply override for high confidence Places365 decisions
if p365_is_indoor_decision is not None:
if p365_is_indoor_decision == False:
self.logger.debug(f"Applying outdoor override. Original: {is_indoor}")
original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}"
is_indoor = False
indoor_probability = 0.02
final_score = -8.0
diagnostics["p365_force_override_applied"] = (
f"P365 FORCED OUTDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})"
)
diagnostics["p365_override_original_decision"] = original_decision
self.logger.info(f"Places365 FORCED OUTDOOR override applied. New is_indoor: {is_indoor}")
elif p365_is_indoor_decision == True:
self.logger.debug(f"Applying indoor override. Original: {is_indoor}")
original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}"
is_indoor = True
indoor_probability = 0.98
final_score = 8.0
diagnostics["p365_force_override_applied"] = (
f"P365 FORCED INDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})"
)
diagnostics["p365_override_original_decision"] = original_decision
self.logger.info(f"Places365 FORCED INDOOR override applied. New is_indoor: {is_indoor}")
# Record final values
diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3)
diagnostics["final_is_indoor_decision"] = bool(is_indoor)
self.logger.debug(f"Final classification: is_indoor={is_indoor}, score={final_score}, prob={indoor_probability}")
return {
"is_indoor": is_indoor,
"indoor_probability": indoor_probability,
"final_score": final_score
}
def _ensure_default_contributions(self, feature_contributions: Dict[str, float]) -> None:
"""Ensure all expected feature contribution keys have default values."""
default_keys = [
"sky_openness_features", "enclosure_features",
"brightness_uniformity_contribution", "light_source_features"
]
for key in default_keys:
if key not in feature_contributions:
feature_contributions[key] = 0.0
def _get_default_classification_result(self) -> Dict[str, Any]:
"""Return default classification result in case of errors."""
return {
"is_indoor": False,
"indoor_probability": 0.5,
"indoor_score_raw": 0.0,
"feature_contributions": {
"sky_openness_features": 0.0,
"enclosure_features": 0.0,
"brightness_uniformity_contribution": 0.0,
"light_source_features": 0.0
},
"diagnostics": {
"error": "Classification failed, using default values"
}
}