File size: 36,109 Bytes
e6a18b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import numpy as np
import logging
import traceback
from typing import Dict, Any, Optional, List
from configuration_manager import ConfigurationManager


class IndoorOutdoorClassifier:
    """
    Classifies scenes as indoor or outdoor based on visual features and Places365 context.(判斷室內室外)
    此class會融入PLACES365,使判斷更準確

    This class implements sophisticated decision logic that combines multiple evidence sources
    including visual scene analysis, structural features, and external scene classification
    data to determine whether a scene is indoor or outdoor.
    """

    def __init__(self, config_manager: ConfigurationManager):
        """
        Initialize the indoor/outdoor classifier.

        Args:
            config_manager: Configuration manager instance for accessing thresholds and weights.
        """
        self.config_manager = config_manager
        self.logger = self._setup_logger()

        # Internal threshold constants for Places365 confidence levels
        self.P365_HIGH_CONF_THRESHOLD = 0.65
        self.P365_MODERATE_CONF_THRESHOLD = 0.4

        # 以下是絕對室內/室外的基本情況
        self.DEFINITELY_OUTDOOR_KEYWORDS_P365 = [
            "street", "road", "highway", "park", "beach", "mountain", "forest", "field",
            "outdoor", "sky", "coast", "courtyard", "square", "plaza", "bridge",
            "parking_lot", "playground", "stadium", "construction_site", "river", "ocean",
            "desert", "garden", "trail", "intersection", "crosswalk", "sidewalk", "pathway",
            "avenue", "boulevard", "downtown", "city_center", "market_outdoor"
        ]

        self.DEFINITELY_INDOOR_KEYWORDS_P365 = [
            "bedroom", "office", "kitchen", "library", "classroom", "conference_room", "living_room",
            "bathroom", "hospital", "hotel_room", "cabin", "interior", "museum", "gallery",
            "mall", "market_indoor", "basement", "corridor", "lobby", "restaurant_indoor",
            "bar_indoor", "shop_indoor", "gym_indoor"
        ]

    def _setup_logger(self) -> logging.Logger:
        """Set up logger for classification operations."""
        logger = logging.getLogger(f"{__name__}.IndoorOutdoorClassifier")
        if not logger.handlers:
            handler = logging.StreamHandler()
            formatter = logging.Formatter(
                '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
            )
            handler.setFormatter(formatter)
            logger.addHandler(handler)
            logger.setLevel(logging.INFO)
        return logger

    def classify(self, features: Dict[str, Any], places365_info: Optional[Dict] = None) -> Dict[str, Any]:
        """
        Classify scene as indoor or outdoor based on features and Places365 context.

        Args:
            features: Dictionary containing extracted image features.
            places365_info: Optional Places365 classification information.

        Returns:
            Dictionary containing classification results including decision, probability,
            feature contributions, and diagnostic information.
        """
        try:
            self.logger.debug("Starting indoor/outdoor classification")

            # Initialize classification components
            visual_score = 0.0
            feature_contributions = {}
            diagnostics = {}

            # Extract Places365 information
            p365_context = self._extract_places365_context(places365_info, diagnostics)

            # Compute visual evidence score
            visual_analysis = self._analyze_visual_evidence(features, diagnostics)
            visual_score = visual_analysis["visual_score"]
            feature_contributions.update(visual_analysis["contributions"])

            # Incorporate Places365 influence
            p365_analysis = self._analyze_places365_influence(
                p365_context, visual_analysis.get("strong_sky_signal", False), diagnostics
            )
            p365_influence_score = p365_analysis["influence_score"]
            if abs(p365_influence_score) > 0.01:
                feature_contributions["places365_influence_score"] = round(p365_influence_score, 2)

            # Calculate final score and probability
            final_indoor_score = visual_score + p365_influence_score
            classification_result = self._compute_final_classification(
                final_indoor_score, visual_score, p365_influence_score, diagnostics
            )

            # Apply Places365 override if conditions are met
            override_result = self._apply_places365_override(
                classification_result, p365_context, diagnostics
            )

            # Ensure default values for missing contributions
            self._ensure_default_contributions(feature_contributions)

            # 最終結果
            result = {
                "is_indoor": override_result["is_indoor"],
                "indoor_probability": override_result["indoor_probability"],
                "indoor_score_raw": override_result["final_score"],
                "feature_contributions": feature_contributions,
                "diagnostics": diagnostics
            }

            self.logger.debug(f"Classification complete: indoor={result['is_indoor']}, "
                            f"probability={result['indoor_probability']:.3f}")

            return result

        except Exception as e:
            self.logger.error(f"Error in indoor/outdoor classification: {str(e)}")
            self.logger.error(f"Traceback: {traceback.format_exc()}")
            return self._get_default_classification_result()

    def _extract_places365_context(self, places365_info: Optional[Dict],
                                  diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Extract and validate Places365 context information."""
        context = {
            "mapped_scene": "unknown",
            "is_indoor_from_classification": None,
            "attributes": [],
            "confidence": 0.0,
            "is_indoor": None
        }

        if places365_info:
            context["mapped_scene"] = places365_info.get('mapped_scene_type', 'unknown').lower()
            context["attributes"] = [attr.lower() for attr in places365_info.get('attributes', [])]
            context["confidence"] = places365_info.get('confidence', 0.0)
            context["is_indoor_from_classification"] = places365_info.get('is_indoor_from_classification', None)
            context["is_indoor"] = places365_info.get('is_indoor', None)

            diagnostics["p365_context_received"] = (
                f"P365 Scene: {context['mapped_scene']}, P365 SceneConf: {context['confidence']:.2f}, "
                f"P365 DirectIndoor: {context['is_indoor_from_classification']}, "
                f"P365 Attrs: {context['attributes']}"
            )

        return context

    def _analyze_visual_evidence(self, features: Dict[str, Any],
                                diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze visual evidence for indoor/outdoor classification."""
        visual_score = 0.0
        contributions = {}
        strong_sky_signal = False

        # Sky and openness analysis
        sky_analysis = self._analyze_sky_evidence(features, diagnostics)
        visual_score += sky_analysis["score"]
        if sky_analysis["score"] != 0:
            contributions["sky_openness_features_visual"] = round(sky_analysis["score"], 2)
        strong_sky_signal = sky_analysis["strong_signal"]

        # Enclosure and structural analysis
        enclosure_analysis = self._analyze_enclosure_evidence(features, strong_sky_signal, diagnostics)
        visual_score += enclosure_analysis["score"]
        if enclosure_analysis["score"] != 0:
            contributions["enclosure_features"] = round(enclosure_analysis["score"], 2)

        # Brightness uniformity analysis
        uniformity_analysis = self._analyze_brightness_uniformity(features, strong_sky_signal, diagnostics)
        visual_score += uniformity_analysis["score"]
        if uniformity_analysis["score"] != 0:
            contributions["brightness_uniformity_contribution"] = round(uniformity_analysis["score"], 2)

        # Light source analysis
        light_analysis = self._analyze_light_sources(features, strong_sky_signal, diagnostics)
        visual_score += light_analysis["score"]
        if light_analysis["score"] != 0:
            contributions["light_source_features"] = round(light_analysis["score"], 2)

        # Color atmosphere analysis
        atmosphere_analysis = self._analyze_color_atmosphere(features, strong_sky_signal, diagnostics)
        visual_score += atmosphere_analysis["score"]
        if atmosphere_analysis["score"] != 0:
            contributions["warm_atmosphere_indoor_visual_contrib"] = round(atmosphere_analysis["score"], 2)

        # Home environment pattern analysis
        home_analysis = self._analyze_home_environment_pattern(features, strong_sky_signal, diagnostics)
        visual_score += home_analysis["score"]
        if home_analysis["score"] != 0:
            contributions["home_environment_pattern_visual"] = round(home_analysis["score"], 2)

        # Aerial street pattern analysis
        aerial_analysis = self._analyze_aerial_street_pattern(features, strong_sky_signal, contributions, diagnostics)
        visual_score += aerial_analysis["score"]
        if aerial_analysis["score"] != 0:
            contributions["aerial_street_pattern_visual"] = round(aerial_analysis["score"], 2)

        diagnostics["visual_indoor_score_subtotal"] = round(visual_score, 3)

        return {
            "visual_score": visual_score,
            "contributions": contributions,
            "strong_sky_signal": strong_sky_signal
        }

    def _analyze_sky_evidence(self, features: Dict[str, Any],
                             diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze sky-related evidence for outdoor classification."""
        sky_evidence_score = 0.0
        strong_sky_signal = False

        # Extract relevant features
        sky_blue_dominance = features.get("sky_region_blue_dominance", 0.0)
        sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
        texture_complexity = features.get("top_region_texture_complexity", 0.5)
        openness_top_edge = features.get("openness_top_edge", 0.5)

        # Get thresholds
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors

        # Strong blue sky signal
        if sky_blue_dominance > thresholds.sky_blue_dominance_thresh:
            sky_evidence_score -= weights.sky_blue_dominance_w * sky_blue_dominance
            diagnostics["sky_detection_reason_visual"] = f"Visual: Strong sky-like blue ({sky_blue_dominance:.2f})"
            strong_sky_signal = True

        # Bright top region with low texture
        elif (sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_strong_thresh', 1.35) and
              texture_complexity < getattr(thresholds, 'sky_texture_complexity_clear_thresh', 0.25)):
            outdoor_push = weights.sky_brightness_ratio_w * (sky_brightness_ratio - 1.0)
            sky_evidence_score -= outdoor_push
            sky_evidence_score -= weights.sky_texture_w
            diagnostics["sky_detection_reason_visual"] = (
                f"Visual: Top brighter (ratio:{sky_brightness_ratio:.2f}) & low texture."
            )
            strong_sky_signal = True

        # High top edge openness
        elif openness_top_edge > getattr(thresholds, 'openness_top_strong_thresh', 0.80):
            sky_evidence_score -= weights.openness_top_w * openness_top_edge
            diagnostics["sky_detection_reason_visual"] = (
                f"Visual: Very high top edge openness ({openness_top_edge:.2f})."
            )
            strong_sky_signal = True

        # Weak sky signal (cloudy conditions)
        elif (not strong_sky_signal and
              texture_complexity < getattr(thresholds, 'sky_texture_complexity_cloudy_thresh', 0.20) and
              sky_brightness_ratio > getattr(thresholds, 'sky_brightness_ratio_cloudy_thresh', 0.95)):
            sky_evidence_score -= weights.sky_texture_w * (1.0 - texture_complexity) * 0.5
            diagnostics["sky_detection_reason_visual"] = (
                f"Visual: Weak sky signal (low texture, brightish top: {texture_complexity:.2f}), less weight."
            )

        if strong_sky_signal:
            diagnostics["strong_sky_signal_visual_detected"] = True

        return {
            "score": sky_evidence_score,
            "strong_signal": strong_sky_signal
        }

    def _analyze_enclosure_evidence(self, features: Dict[str, Any], strong_sky_signal: bool,
                                   diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze enclosure evidence for indoor classification."""
        enclosure_score = 0.0

        # Extract features
        ceiling_likelihood = features.get("ceiling_likelihood", 0.0)
        boundary_clarity = features.get("boundary_clarity", 0.0)
        texture_complexity = features.get("top_region_texture_complexity", 0.5)
        openness_top_edge = features.get("openness_top_edge", 0.5)

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors
        override_factors = self.config_manager.override_factors

        # Ceiling likelihood analysis
        if ceiling_likelihood > thresholds.ceiling_likelihood_thresh:
            current_ceiling_score = weights.ceiling_likelihood_w * ceiling_likelihood
            if strong_sky_signal:
                current_ceiling_score *= override_factors.sky_override_factor_ceiling
            enclosure_score += current_ceiling_score
            diagnostics["indoor_reason_ceiling_visual"] = (
                f"Visual Ceiling: {ceiling_likelihood:.2f}, ScoreCont: {current_ceiling_score:.2f}"
            )

        # Boundary clarity analysis
        if boundary_clarity > thresholds.boundary_clarity_thresh:
            current_boundary_score = weights.boundary_clarity_w * boundary_clarity
            if strong_sky_signal:
                current_boundary_score *= override_factors.sky_override_factor_boundary
            enclosure_score += current_boundary_score
            diagnostics["indoor_reason_boundary_visual"] = (
                f"Visual Boundary: {boundary_clarity:.2f}, ScoreCont: {current_boundary_score:.2f}"
            )

        # Complex urban top detection
        if (not strong_sky_signal and texture_complexity > 0.7 and
            openness_top_edge < 0.3 and ceiling_likelihood < 0.35):
            diagnostics["complex_urban_top_visual"] = True
            if boundary_clarity > 0.5:
                enclosure_score *= 0.5
                diagnostics["reduced_enclosure_for_urban_top_visual"] = True

        return {"score": enclosure_score}

    def _analyze_brightness_uniformity(self, features: Dict[str, Any], strong_sky_signal: bool,
                                      diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze brightness uniformity patterns."""
        uniformity_score = 0.0

        # Calculate brightness uniformity
        brightness_std = features.get("brightness_std", 50.0)
        avg_brightness = features.get("avg_brightness", 100.0)
        brightness_uniformity = 1.0 - min(1.0, brightness_std / max(avg_brightness, 1e-5))
        shadow_clarity = features.get("shadow_clarity_score", 0.5)

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors
        override_factors = self.config_manager.override_factors

        # High uniformity (indoor indicator)
        if brightness_uniformity > thresholds.brightness_uniformity_thresh_indoor:
            uniformity_score = weights.brightness_uniformity_w * brightness_uniformity
            if strong_sky_signal:
                uniformity_score *= override_factors.sky_override_factor_uniformity

        # Low uniformity (potential outdoor indicator)
        elif brightness_uniformity < thresholds.brightness_uniformity_thresh_outdoor:
            if shadow_clarity > 0.65:
                uniformity_score = -weights.brightness_non_uniformity_outdoor_w * (1.0 - brightness_uniformity)
            elif not strong_sky_signal:
                uniformity_score = weights.brightness_non_uniformity_indoor_penalty_w * (1.0 - brightness_uniformity)

        return {"score": uniformity_score}

    def _analyze_light_sources(self, features: Dict[str, Any], strong_sky_signal: bool,
                              diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze artificial light source patterns."""
        light_score = 0.0

        # Extract light features
        indoor_light_score = features.get("indoor_light_score", 0.0)
        circular_light_count = features.get("circular_light_count", 0)
        bright_spot_count = features.get("bright_spot_count", 0)
        avg_brightness = features.get("avg_brightness", 100.0)
        gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0)
        edges_density = features.get("edges_density", 0.0)

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors
        override_factors = self.config_manager.override_factors

        # Circular lights detection
        if circular_light_count >= 1 and not strong_sky_signal:
            light_score += weights.circular_lights_w * circular_light_count

        # Indoor light score
        elif indoor_light_score > 0.55 and not strong_sky_signal:
            light_score += weights.indoor_light_score_w * indoor_light_score

        # Many bright spots in dim scenes
        elif (bright_spot_count > thresholds.many_bright_spots_thresh and
              avg_brightness < thresholds.dim_scene_for_spots_thresh and
              not strong_sky_signal):
            light_score += weights.many_bright_spots_indoor_w * min(bright_spot_count / 10.0, 1.5)

        # Street structure detection
        is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15

        if is_likely_street_structure and bright_spot_count > 3 and not strong_sky_signal:
            light_score *= 0.2
            diagnostics["street_lights_heuristic_visual"] = True
        elif strong_sky_signal:
            light_score *= override_factors.sky_override_factor_lights

        return {"score": light_score}

    def _analyze_color_atmosphere(self, features: Dict[str, Any], strong_sky_signal: bool,
                                 diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze color atmosphere patterns."""
        atmosphere_score = 0.0

        # Extract features
        color_atmosphere = features.get("color_atmosphere", "neutral")
        avg_brightness = features.get("avg_brightness", 100.0)
        avg_saturation = features.get("avg_saturation", 100.0)
        gradient_ratio = features.get("gradient_ratio_vertical_horizontal", 1.0)
        edges_density = features.get("edges_density", 0.0)
        indoor_light_score = features.get("indoor_light_score", 0.0)

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors

        # Warm atmosphere analysis
        if (color_atmosphere == "warm" and
            avg_brightness < thresholds.warm_indoor_max_brightness_thresh):

            # Check exclusion conditions
            is_likely_street_structure = (0.7 < gradient_ratio < 1.5) and edges_density > 0.15
            is_complex_urban_top = diagnostics.get("complex_urban_top_visual", False)

            if (not strong_sky_signal and not is_complex_urban_top and
                not (is_likely_street_structure and avg_brightness > 80) and
                avg_saturation < 160):

                if indoor_light_score > 0.05:
                    atmosphere_score = weights.warm_atmosphere_indoor_w

        return {"score": atmosphere_score}

    def _analyze_home_environment_pattern(self, features: Dict[str, Any], strong_sky_signal: bool,
                                         diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze home/residential environment patterns."""
        home_score = 0.0

        if strong_sky_signal:
            diagnostics["skipped_home_env_visual_due_to_sky"] = True
            return {"score": 0.0}

        # Calculate bedroom/home indicators
        bedroom_indicators = 0.0
        brightness_uniformity = features.get("brightness_uniformity", 0.0)
        boundary_clarity = features.get("boundary_clarity", 0.0)
        ceiling_likelihood = features.get("ceiling_likelihood", 0.0)
        bright_spot_count = features.get("bright_spot_count", 0)
        circular_light_count = features.get("circular_light_count", 0)
        warm_ratio = features.get("warm_ratio", 0.0)
        avg_saturation = features.get("avg_saturation", 100.0)

        # Accumulate indicators
        if brightness_uniformity > 0.65 and boundary_clarity > 0.40:
            bedroom_indicators += 1.1

        if ceiling_likelihood > 0.35 and (bright_spot_count > 0 or circular_light_count > 0):
            bedroom_indicators += 1.1

        if warm_ratio > 0.55 and brightness_uniformity > 0.65:
            bedroom_indicators += 1.0

        if brightness_uniformity > 0.70 and avg_saturation < 60:
            bedroom_indicators += 0.7

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors

        # Apply scoring based on indicator strength
        if bedroom_indicators >= thresholds.home_pattern_thresh_strong:
            home_score = weights.home_env_strong_w
        elif bedroom_indicators >= thresholds.home_pattern_thresh_moderate:
            home_score = weights.home_env_moderate_w

        if bedroom_indicators > 0:
            diagnostics["home_environment_pattern_visual_indicators"] = round(bedroom_indicators, 1)

        return {"score": home_score}

    def _analyze_aerial_street_pattern(self, features: Dict[str, Any], strong_sky_signal: bool,
                                      contributions: Dict[str, float],
                                      diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze aerial view street patterns."""
        aerial_score = 0.0

        # Extract features
        sky_brightness_ratio = features.get("sky_region_brightness_ratio", 1.0)
        texture_complexity = features.get("top_region_texture_complexity", 0.5)
        avg_brightness = features.get("avg_brightness", 100.0)

        # Get configuration
        thresholds = self.config_manager.indoor_outdoor_thresholds
        weights = self.config_manager.weighting_factors

        # Aerial street pattern detection
        if (sky_brightness_ratio < thresholds.aerial_top_dark_ratio_thresh and
            texture_complexity > thresholds.aerial_top_complex_thresh and
            avg_brightness > thresholds.aerial_min_avg_brightness_thresh and
            not strong_sky_signal):

            aerial_score = -weights.aerial_street_w
            diagnostics["aerial_street_pattern_visual_detected"] = True

            # Reduce enclosure features if aerial pattern detected
            if ("enclosure_features" in contributions and
                contributions["enclosure_features"] > 0):

                reduction_factor = self.config_manager.override_factors.aerial_enclosure_reduction_factor
                positive_enclosure_score = max(0, contributions["enclosure_features"])
                reduction_amount = positive_enclosure_score * reduction_factor

                contributions["enclosure_features_reduced_by_aerial"] = round(-reduction_amount, 2)
                contributions["enclosure_features"] = round(
                    contributions["enclosure_features"] - reduction_amount, 2
                )

        return {"score": aerial_score}

    def _analyze_places365_influence(self, p365_context: Dict[str, Any],
                                    strong_sky_signal: bool,
                                    diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze Places365 influence on classification."""
        p365_influence_score = 0.0

        if not p365_context or p365_context["confidence"] < self.P365_MODERATE_CONF_THRESHOLD:
            return {"influence_score": 0.0}

        # Places365 direct classification influence
        if p365_context["is_indoor_from_classification"] is not None:
            p365_influence_score += self._compute_direct_classification_influence(
                p365_context, strong_sky_signal, diagnostics
            )

        # Places365 scene context influence
        elif p365_context["confidence"] >= self.P365_MODERATE_CONF_THRESHOLD:
            p365_influence_score += self._compute_scene_context_influence(
                p365_context, strong_sky_signal, diagnostics
            )

        # Places365 attributes influence
        if p365_context["attributes"] and p365_context["confidence"] > 0.5:
            p365_influence_score += self._compute_attributes_influence(
                p365_context, strong_sky_signal, diagnostics
            )

        # High confidence street scene boost
        if (p365_context["confidence"] >= 0.85 and
            any(kw in p365_context["mapped_scene"] for kw in ["intersection", "crosswalk", "street", "road"])):

            additional_outdoor_push = -3.0 * p365_context["confidence"]
            p365_influence_score += additional_outdoor_push
            diagnostics["p365_street_scene_boost"] = (
                f"Additional outdoor push: {additional_outdoor_push:.2f} for street scene: "
                f"{p365_context['mapped_scene']}"
            )
            self.logger.debug(f"High confidence street scene detected - "
                            f"{p365_context['mapped_scene']} with confidence {p365_context['confidence']:.3f}")

        return {"influence_score": p365_influence_score}

    def _compute_direct_classification_influence(self, p365_context: Dict[str, Any],
                                               strong_sky_signal: bool,
                                               diagnostics: Dict[str, Any]) -> float:
        """Compute influence from Places365 direct indoor/outdoor classification."""
        P365_DIRECT_INDOOR_WEIGHT = 3.5
        P365_DIRECT_OUTDOOR_WEIGHT = 4.0

        confidence = p365_context["confidence"]
        is_indoor = p365_context["is_indoor_from_classification"]
        mapped_scene = p365_context["mapped_scene"]

        if is_indoor is True:
            current_contrib = P365_DIRECT_INDOOR_WEIGHT * confidence
            diagnostics["p365_influence_source"] = (
                f"P365_DirectIndoor(True,Conf:{confidence:.2f},Scene:{mapped_scene})"
            )
        else:
            current_contrib = -P365_DIRECT_OUTDOOR_WEIGHT * confidence
            diagnostics["p365_influence_source"] = (
                f"P365_DirectIndoor(False,Conf:{confidence:.2f},Scene:{mapped_scene})"
            )

        # Apply sky override for indoor predictions
        if strong_sky_signal and current_contrib > 0:
            sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
            current_contrib *= sky_override_factor
            diagnostics["p365_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}"

        return current_contrib

    def _compute_scene_context_influence(self, p365_context: Dict[str, Any],
                                        strong_sky_signal: bool,
                                        diagnostics: Dict[str, Any]) -> float:
        """Compute influence from Places365 scene context."""
        P365_SCENE_CONTEXT_INDOOR_WEIGHT = 2.0
        P365_SCENE_CONTEXT_OUTDOOR_WEIGHT = 2.5

        confidence = p365_context["confidence"]
        mapped_scene = p365_context["mapped_scene"]

        is_def_indoor = any(kw in mapped_scene for kw in self.DEFINITELY_INDOOR_KEYWORDS_P365)
        is_def_outdoor = any(kw in mapped_scene for kw in self.DEFINITELY_OUTDOOR_KEYWORDS_P365)

        current_contrib = 0.0

        if is_def_indoor and not is_def_outdoor:
            current_contrib = P365_SCENE_CONTEXT_INDOOR_WEIGHT * confidence
            diagnostics["p365_influence_source"] = (
                f"P365_SceneContext(Indoor: {mapped_scene}, Conf:{confidence:.2f})"
            )
        elif is_def_outdoor and not is_def_indoor:
            current_contrib = -P365_SCENE_CONTEXT_OUTDOOR_WEIGHT * confidence
            diagnostics["p365_influence_source"] = (
                f"P365_SceneContext(Outdoor: {mapped_scene}, Conf:{confidence:.2f})"
            )

        # Apply sky override for indoor predictions
        if strong_sky_signal and current_contrib > 0:
            sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
            current_contrib *= sky_override_factor
            diagnostics["p365_context_indoor_push_reduced_by_visual_sky"] = f"Reduced to {current_contrib:.2f}"

        return current_contrib

    def _compute_attributes_influence(self, p365_context: Dict[str, Any],
                                     strong_sky_signal: bool,
                                     diagnostics: Dict[str, Any]) -> float:
        """Compute influence from Places365 attributes."""
        P365_ATTRIBUTE_INDOOR_WEIGHT = 1.0
        P365_ATTRIBUTE_OUTDOOR_WEIGHT = 1.5

        confidence = p365_context["confidence"]
        attributes = p365_context["attributes"]

        attr_contrib = 0.0

        if "indoor" in attributes and "outdoor" not in attributes:
            attr_contrib += P365_ATTRIBUTE_INDOOR_WEIGHT * (confidence * 0.5)
            diagnostics["p365_attr_influence"] = f"+{attr_contrib:.2f} (indoor attr)"
        elif "outdoor" in attributes and "indoor" not in attributes:
            attr_contrib -= P365_ATTRIBUTE_OUTDOOR_WEIGHT * (confidence * 0.5)
            diagnostics["p365_attr_influence"] = f"{attr_contrib:.2f} (outdoor attr)"

        # Apply sky override for indoor attributes
        if strong_sky_signal and attr_contrib > 0:
            sky_override_factor = self.config_manager.override_factors.sky_override_factor_p365_indoor_decision
            attr_contrib *= sky_override_factor

        return attr_contrib

    def _compute_final_classification(self, final_indoor_score: float, visual_score: float,
                                     p365_influence_score: float, diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Compute final classification probability and decision."""
        # Record score breakdown
        diagnostics["final_indoor_score_value"] = round(final_indoor_score, 3)
        diagnostics["final_score_breakdown"] = (
            f"VisualScore: {visual_score:.2f}, P365Influence: {p365_influence_score:.2f}"
        )

        # Apply sigmoid transformation
        sigmoid_scale = self.config_manager.algorithm_parameters.indoor_score_sigmoid_scale
        indoor_probability = 1 / (1 + np.exp(-final_indoor_score * sigmoid_scale))

        # Make decision
        decision_threshold = self.config_manager.algorithm_parameters.indoor_decision_threshold
        is_indoor = indoor_probability > decision_threshold

        return {
            "is_indoor": is_indoor,
            "indoor_probability": indoor_probability,
            "final_score": final_indoor_score
        }

    def _apply_places365_override(self, classification_result: Dict[str, Any],
                                 p365_context: Dict[str, Any],
                                 diagnostics: Dict[str, Any]) -> Dict[str, Any]:
        """Apply Places365 high-confidence override if conditions are met."""
        is_indoor = classification_result["is_indoor"]
        indoor_probability = classification_result["indoor_probability"]
        final_score = classification_result["final_score"]

        # Check for override conditions
        if not p365_context or p365_context["confidence"] < 0.5:
            diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3)
            diagnostics["final_is_indoor_decision"] = bool(is_indoor)
            return classification_result

        p365_is_indoor_decision = p365_context.get("is_indoor", None)
        confidence = p365_context["confidence"]

        self.logger.debug(f"Override check: is_indoor={is_indoor}, p365_conf={confidence}, "
                         f"p365_raw_is_indoor={p365_is_indoor_decision}")

        # Apply override for high confidence Places365 decisions
        if p365_is_indoor_decision is not None:
            if p365_is_indoor_decision == False:
                self.logger.debug(f"Applying outdoor override. Original: {is_indoor}")
                original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}"

                is_indoor = False
                indoor_probability = 0.02
                final_score = -8.0

                diagnostics["p365_force_override_applied"] = (
                    f"P365 FORCED OUTDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})"
                )
                diagnostics["p365_override_original_decision"] = original_decision
                self.logger.info(f"Places365 FORCED OUTDOOR override applied. New is_indoor: {is_indoor}")

            elif p365_is_indoor_decision == True:
                self.logger.debug(f"Applying indoor override. Original: {is_indoor}")
                original_decision = f"Indoor:{is_indoor}, Prob:{indoor_probability:.3f}, Score:{final_score:.2f}"

                is_indoor = True
                indoor_probability = 0.98
                final_score = 8.0

                diagnostics["p365_force_override_applied"] = (
                    f"P365 FORCED INDOOR (is_indoor: {p365_is_indoor_decision}, Conf: {confidence:.3f})"
                )
                diagnostics["p365_override_original_decision"] = original_decision
                self.logger.info(f"Places365 FORCED INDOOR override applied. New is_indoor: {is_indoor}")

        # Record final values
        diagnostics["final_indoor_probability_calculated"] = round(indoor_probability, 3)
        diagnostics["final_is_indoor_decision"] = bool(is_indoor)

        self.logger.debug(f"Final classification: is_indoor={is_indoor}, score={final_score}, prob={indoor_probability}")

        return {
            "is_indoor": is_indoor,
            "indoor_probability": indoor_probability,
            "final_score": final_score
        }

    def _ensure_default_contributions(self, feature_contributions: Dict[str, float]) -> None:
        """Ensure all expected feature contribution keys have default values."""
        default_keys = [
            "sky_openness_features", "enclosure_features",
            "brightness_uniformity_contribution", "light_source_features"
        ]

        for key in default_keys:
            if key not in feature_contributions:
                feature_contributions[key] = 0.0

    def _get_default_classification_result(self) -> Dict[str, Any]:
        """Return default classification result in case of errors."""
        return {
            "is_indoor": False,
            "indoor_probability": 0.5,
            "indoor_score_raw": 0.0,
            "feature_contributions": {
                "sky_openness_features": 0.0,
                "enclosure_features": 0.0,
                "brightness_uniformity_contribution": 0.0,
                "light_source_features": 0.0
            },
            "diagnostics": {
                "error": "Classification failed, using default values"
            }
        }