Spaces:
Sleeping
Sleeping
File size: 2,558 Bytes
2249e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
title: SFOSR
emoji: 🏃
colorFrom: yellow
colorTo: gray
sdk: gradio
sdk_version: 5.24.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: SFOSR System
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# SFOSR: Система Формальной Оценки Смысла и Верификации
This project implements core components of the SFOSR theory, including semantic analysis, contract verification, and proof construction using both input data and a knowledge base.
## Project Structure
- `sfosr_core/`: Contains the main system logic (`integrated_sfosr.py`, `sfosr_database.py`).
- `tests/`: Contains unit tests (`test_*.py`).
- `docs/`: Contains documentation and theoretical papers related to SFOSR.
- `archive/`: Contains archived materials (e.g., old databases).
- `sfosr.db`: The main SQLite database containing concepts, vectors, rules, etc.
- `requirements.txt`: Project dependencies.
- `README.md`: This file.
## Installation
(Currently, no external dependencies are required beyond standard Python libraries.)
```bash
# It's recommended to use a virtual environment
python -m venv venv
source venv/bin/activate # On Windows use `venv\\Scripts\\activate`
# Install dependencies (if any added later)
pip install -r requirements.txt
```
## Running Tests
To run all tests, execute the following command from the project root directory:
```bash
python -m unittest discover tests -v
```
## Current Capabilities
- Analyzes SFOSR structures for syntactic validity.
- Verifies vectors against database concepts and predefined contracts.
- Constructs proofs based on input vectors, prioritizing them first.
- Integrates knowledge from the `sfosr.db` database into the proof process if input vectors are insufficient.
- Supports inference rules: `chain_rule`, `causality_transfer`, `implication_causality_chain`, `part_of_transitivity`.
- Correctly handles cyclic dependencies in proof paths.
## Known Limitations / Future Work
Запуск `python integrated_sfosr.py` демонстрирует обработку примера с построением доказательства и выводом **оценок достоверности**.
## Вклад в проект
Приглашаем заинтересованных исследователей и разработчиков присоединиться к развитию SFOSR.
## Лицензия
Проект SFOSR распространяется под лицензией MIT.
|