File size: 2,558 Bytes
2249e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
title: SFOSR
emoji: 🏃
colorFrom: yellow
colorTo: gray
sdk: gradio
sdk_version: 5.24.0
app_file: app.py
pinned: false
license: apache-2.0
short_description: SFOSR System
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# SFOSR: Система Формальной Оценки Смысла и Верификации

This project implements core components of the SFOSR theory, including semantic analysis, contract verification, and proof construction using both input data and a knowledge base.

## Project Structure

- `sfosr_core/`: Contains the main system logic (`integrated_sfosr.py`, `sfosr_database.py`).
- `tests/`: Contains unit tests (`test_*.py`).
- `docs/`: Contains documentation and theoretical papers related to SFOSR.
- `archive/`: Contains archived materials (e.g., old databases).
- `sfosr.db`: The main SQLite database containing concepts, vectors, rules, etc.
- `requirements.txt`: Project dependencies.
- `README.md`: This file.

## Installation

(Currently, no external dependencies are required beyond standard Python libraries.)

```bash
# It's recommended to use a virtual environment
python -m venv venv
source venv/bin/activate # On Windows use `venv\\Scripts\\activate`

# Install dependencies (if any added later)
pip install -r requirements.txt
```

## Running Tests

To run all tests, execute the following command from the project root directory:

```bash
python -m unittest discover tests -v
```

## Current Capabilities

- Analyzes SFOSR structures for syntactic validity.
- Verifies vectors against database concepts and predefined contracts.
- Constructs proofs based on input vectors, prioritizing them first.
- Integrates knowledge from the `sfosr.db` database into the proof process if input vectors are insufficient.
- Supports inference rules: `chain_rule`, `causality_transfer`, `implication_causality_chain`, `part_of_transitivity`.
- Correctly handles cyclic dependencies in proof paths.

## Known Limitations / Future Work

Запуск `python integrated_sfosr.py` демонстрирует обработку примера с построением доказательства и выводом **оценок достоверности**.

## Вклад в проект

Приглашаем заинтересованных исследователей и разработчиков присоединиться к развитию SFOSR.

## Лицензия

Проект SFOSR распространяется под лицензией MIT.