Spaces:
Sleeping
Sleeping
Commit
·
2249e80
0
Parent(s):
Initial SFOSR system with Gradio interface
Browse files- README.md +70 -0
- app.py +212 -0
- requirements.txt +4 -0
- sfosr_core/__init__.py +0 -0
- sfosr_core/sfosr_database.py +452 -0
- sfosr_core/sfosr_system.py +1403 -0
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SFOSR
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.24.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: SFOSR System
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
15 |
+
|
16 |
+
# SFOSR: Система Формальной Оценки Смысла и Верификации
|
17 |
+
|
18 |
+
This project implements core components of the SFOSR theory, including semantic analysis, contract verification, and proof construction using both input data and a knowledge base.
|
19 |
+
|
20 |
+
## Project Structure
|
21 |
+
|
22 |
+
- `sfosr_core/`: Contains the main system logic (`integrated_sfosr.py`, `sfosr_database.py`).
|
23 |
+
- `tests/`: Contains unit tests (`test_*.py`).
|
24 |
+
- `docs/`: Contains documentation and theoretical papers related to SFOSR.
|
25 |
+
- `archive/`: Contains archived materials (e.g., old databases).
|
26 |
+
- `sfosr.db`: The main SQLite database containing concepts, vectors, rules, etc.
|
27 |
+
- `requirements.txt`: Project dependencies.
|
28 |
+
- `README.md`: This file.
|
29 |
+
|
30 |
+
## Installation
|
31 |
+
|
32 |
+
(Currently, no external dependencies are required beyond standard Python libraries.)
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# It's recommended to use a virtual environment
|
36 |
+
python -m venv venv
|
37 |
+
source venv/bin/activate # On Windows use `venv\\Scripts\\activate`
|
38 |
+
|
39 |
+
# Install dependencies (if any added later)
|
40 |
+
pip install -r requirements.txt
|
41 |
+
```
|
42 |
+
|
43 |
+
## Running Tests
|
44 |
+
|
45 |
+
To run all tests, execute the following command from the project root directory:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
python -m unittest discover tests -v
|
49 |
+
```
|
50 |
+
|
51 |
+
## Current Capabilities
|
52 |
+
|
53 |
+
- Analyzes SFOSR structures for syntactic validity.
|
54 |
+
- Verifies vectors against database concepts and predefined contracts.
|
55 |
+
- Constructs proofs based on input vectors, prioritizing them first.
|
56 |
+
- Integrates knowledge from the `sfosr.db` database into the proof process if input vectors are insufficient.
|
57 |
+
- Supports inference rules: `chain_rule`, `causality_transfer`, `implication_causality_chain`, `part_of_transitivity`.
|
58 |
+
- Correctly handles cyclic dependencies in proof paths.
|
59 |
+
|
60 |
+
## Known Limitations / Future Work
|
61 |
+
|
62 |
+
Запуск `python integrated_sfosr.py` демонстрирует обработку примера с построением доказательства и выводом **оценок достоверности**.
|
63 |
+
|
64 |
+
## Вклад в проект
|
65 |
+
|
66 |
+
Приглашаем заинтересованных исследователей и разработчиков присоединиться к развитию SFOSR.
|
67 |
+
|
68 |
+
## Лицензия
|
69 |
+
|
70 |
+
Проект SFOSR распространяется под лицензией MIT.
|
app.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gradio application for SFOSR (Semantic Formal Ontology Structure Representation) System.
|
3 |
+
|
4 |
+
Provides an interface to analyze, verify, and construct proofs using the SFOSR framework.
|
5 |
+
"""
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
from sfosr_core.sfosr_system import SFOSRSystem # Assuming sfosr_system.py is in sfosr_core
|
11 |
+
|
12 |
+
# --- Configuration ---
|
13 |
+
DB_PATH = "sfosr.db" # Assumes the database is in the root directory
|
14 |
+
|
15 |
+
# Check if DB exists, otherwise handle appropriately (e.g., log an error)
|
16 |
+
if not os.path.exists(DB_PATH):
|
17 |
+
print(f"Error: Database file not found at {DB_PATH}. Please ensure it exists.")
|
18 |
+
# In a real scenario, you might want to exit or provide a way to upload/create it.
|
19 |
+
sfosr_instance = None # Indicate that the system is not ready
|
20 |
+
else:
|
21 |
+
# --- Initialize SFOSR System ---
|
22 |
+
try:
|
23 |
+
sfosr_instance = SFOSRSystem(db_path=DB_PATH)
|
24 |
+
print("SFOSR System initialized successfully.")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error initializing SFOSR System: {e}")
|
27 |
+
sfosr_instance = None # Indicate that the system failed to initialize
|
28 |
+
|
29 |
+
# --- Helper Functions for Gradio ---
|
30 |
+
|
31 |
+
def handle_system_unavailable():
|
32 |
+
"""Returns an error message if the SFOSR system isn't ready."""
|
33 |
+
return "SFOSR System is not available. Please check server logs.", "", "", ""
|
34 |
+
|
35 |
+
def process_input_json(json_string):
|
36 |
+
"""Safely parse input JSON string."""
|
37 |
+
if not json_string:
|
38 |
+
return None, "Input JSON cannot be empty."
|
39 |
+
try:
|
40 |
+
data = json.loads(json_string)
|
41 |
+
if not isinstance(data, dict):
|
42 |
+
return None, "Input must be a valid JSON object (dictionary)."
|
43 |
+
if "vectors" not in data or not isinstance(data["vectors"], list):
|
44 |
+
return None, "Input JSON must contain a 'vectors' key with a list of vectors."
|
45 |
+
# Add more validation as needed (e.g., text key)
|
46 |
+
return data, None
|
47 |
+
except json.JSONDecodeError as e:
|
48 |
+
return None, f"Invalid JSON format: {e}"
|
49 |
+
except Exception as e:
|
50 |
+
return None, f"Error processing input: {e}"
|
51 |
+
|
52 |
+
def run_analysis_verification(input_json_str):
|
53 |
+
"""Gradio function to run analysis and verification."""
|
54 |
+
if sfosr_instance is None:
|
55 |
+
return handle_system_unavailable()
|
56 |
+
|
57 |
+
input_data, error = process_input_json(input_json_str)
|
58 |
+
if error:
|
59 |
+
return f"Input Error: {error}", "", "", ""
|
60 |
+
|
61 |
+
try:
|
62 |
+
# Use the main process method which handles both analysis and verification
|
63 |
+
result = sfosr_instance.process(input_data)
|
64 |
+
|
65 |
+
# Format the output
|
66 |
+
analysis_summary = f"**Analysis Status:** {result.get('analysis', {}).get('status', 'N/A')}\n" \
|
67 |
+
f"**Compilable:** {result.get('analysis', {}).get('is_compilable', 'N/A')}\n" \
|
68 |
+
f"**Graph Metrics:** {result.get('analysis', {}).get('graph_metrics', {})}"
|
69 |
+
|
70 |
+
verification_summary = f"**Total Vectors Processed:** {result.get('verification', {}).get('total_vectors', 0)}\n" \
|
71 |
+
f"**Valid Vectors:** {result.get('verification', {}).get('valid_count', 0)}\n" \
|
72 |
+
f"**Compliance Rate:** {result.get('verification', {}).get('compliance_rate', 0.0):.2f}"
|
73 |
+
|
74 |
+
vector_details = result.get('verification', {}).get('vectors_data', {})
|
75 |
+
|
76 |
+
# Optional: Add graph visualization logic here later
|
77 |
+
graph_output = "Graph visualization placeholder"
|
78 |
+
|
79 |
+
return analysis_summary, verification_summary, vector_details, graph_output
|
80 |
+
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Error during SFOSR processing: {e}") # Log for debugging
|
83 |
+
return f"An error occurred: {e}", "", "", ""
|
84 |
+
|
85 |
+
def run_proof_construction(input_json_str, source_concept, target_concept):
|
86 |
+
"""Gradio function to run proof construction."""
|
87 |
+
if sfosr_instance is None:
|
88 |
+
return handle_system_unavailable()[:1] + ("",) # Only return one value for proof status
|
89 |
+
|
90 |
+
input_data, error = process_input_json(input_json_str)
|
91 |
+
if error:
|
92 |
+
return f"Input Error: {error}", ""
|
93 |
+
|
94 |
+
if not source_concept or not target_concept:
|
95 |
+
return "Source and Target concepts cannot be empty.", ""
|
96 |
+
|
97 |
+
# Add the proof query to the input data
|
98 |
+
input_data["proof_query"] = {
|
99 |
+
"source": source_concept,
|
100 |
+
"target": target_concept
|
101 |
+
}
|
102 |
+
|
103 |
+
try:
|
104 |
+
# Use the main process method - it includes proof if query exists
|
105 |
+
result = sfosr_instance.process(input_data)
|
106 |
+
|
107 |
+
proof_result = result.get("proof")
|
108 |
+
|
109 |
+
if not proof_result:
|
110 |
+
# This might happen if the process function structure changes or proof wasn't run
|
111 |
+
return "Proof was not attempted or failed silently.", ""
|
112 |
+
|
113 |
+
proof_status = f"**Proof Status:** {proof_result.get('status', 'N/A')}\n" \
|
114 |
+
f"**Is Valid:** {proof_result.get('is_valid', 'N/A')}"
|
115 |
+
if proof_result.get('reason'):
|
116 |
+
proof_status += f"\n**Reason:** {proof_result.get('reason')}"
|
117 |
+
|
118 |
+
proof_details = proof_result # Return the whole proof structure for now
|
119 |
+
|
120 |
+
return proof_status, proof_details
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
print(f"Error during SFOSR proof: {e}") # Log for debugging
|
124 |
+
return f"An error occurred: {e}", ""
|
125 |
+
|
126 |
+
|
127 |
+
# --- Gradio Interface Definition ---
|
128 |
+
|
129 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
130 |
+
gr.Markdown(
|
131 |
+
"""
|
132 |
+
# SFOSR: Semantic Formal Ontology Structure Representation
|
133 |
+
Interact with the SFOSR system to analyze, verify semantic structures,
|
134 |
+
and construct formal proofs based on input vectors.
|
135 |
+
Provide input data in the specified JSON format.
|
136 |
+
[Link to GitHub Repo - Placeholder]
|
137 |
+
"""
|
138 |
+
)
|
139 |
+
|
140 |
+
with gr.Tabs():
|
141 |
+
with gr.TabItem("Analyze & Verify"):
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column(scale=1):
|
144 |
+
gr.Markdown("### Input Data (JSON)")
|
145 |
+
input_json_av = gr.Textbox(
|
146 |
+
lines=15,
|
147 |
+
label="SFOSR JSON Input",
|
148 |
+
info="Paste the JSON containing 'text' (optional) and 'vectors' (required list).",
|
149 |
+
placeholder='{\n "text": "Example context...",\n "vectors": [\n {\n "id": "V1",\n "source": "ConceptA",\n "target": "ConceptB",\n "type": "Causality",\n "axis": "relationship",\n "justification": "A causes B based on evidence X."\n }\n // ... more vectors\n ],\n "instance_definitions": {\n "Inst1": {"is_a": "ConceptA", "label": "My Instance"}\n }\n}'
|
150 |
+
)
|
151 |
+
av_button = gr.Button("Run Analysis & Verification", variant="primary")
|
152 |
+
with gr.Column(scale=1):
|
153 |
+
gr.Markdown("### Analysis Summary")
|
154 |
+
analysis_output = gr.Markdown()
|
155 |
+
gr.Markdown("### Verification Summary")
|
156 |
+
verification_output = gr.Markdown()
|
157 |
+
gr.Markdown("### Vector Verification Details")
|
158 |
+
vector_details_output = gr.JSON(label="Vector Details")
|
159 |
+
gr.Markdown("### Concept Graph (Placeholder)")
|
160 |
+
graph_placeholder_output = gr.Textbox(label="Graph Info") # Placeholder
|
161 |
+
|
162 |
+
# Add examples later using gr.Examples
|
163 |
+
# gr.Examples(
|
164 |
+
# examples=[
|
165 |
+
# [sample_json_1],
|
166 |
+
# [sample_json_2]
|
167 |
+
# ],
|
168 |
+
# inputs=input_json_av
|
169 |
+
# )
|
170 |
+
|
171 |
+
with gr.TabItem("Construct Proof"):
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column(scale=1):
|
174 |
+
gr.Markdown("### Input Data & Query (JSON)")
|
175 |
+
input_json_p = gr.Textbox(
|
176 |
+
lines=10,
|
177 |
+
label="SFOSR JSON Context",
|
178 |
+
info="Paste the JSON containing 'vectors' to be used as premises.",
|
179 |
+
placeholder='{\n "vectors": [\n {\n "id": "V1", "source": "A", "target": "B", "type": "Implication", "axis": "logic", "is_valid": true \n },\n {\n "id": "V2", "source": "B", "target": "C", "type": "Implication", "axis": "logic", "is_valid": true \n }\n ]\n}'
|
180 |
+
)
|
181 |
+
source_concept_input = gr.Textbox(label="Source Concept", info="The starting concept for the proof.")
|
182 |
+
target_concept_input = gr.Textbox(label="Target Concept", info="The concept to prove reachability for.")
|
183 |
+
p_button = gr.Button("Find Proof", variant="primary")
|
184 |
+
with gr.Column(scale=1):
|
185 |
+
gr.Markdown("### Proof Result")
|
186 |
+
proof_status_output = gr.Markdown()
|
187 |
+
gr.Markdown("### Proof Details / Path")
|
188 |
+
proof_details_output = gr.JSON(label="Proof Structure")
|
189 |
+
|
190 |
+
# Add examples later using gr.Examples
|
191 |
+
|
192 |
+
# --- Event Handlers ---
|
193 |
+
if sfosr_instance: # Only wire up buttons if the system initialized
|
194 |
+
av_button.click(
|
195 |
+
fn=run_analysis_verification,
|
196 |
+
inputs=[input_json_av],
|
197 |
+
outputs=[analysis_output, verification_output, vector_details_output, graph_placeholder_output]
|
198 |
+
)
|
199 |
+
|
200 |
+
p_button.click(
|
201 |
+
fn=run_proof_construction,
|
202 |
+
inputs=[input_json_p, source_concept_input, target_concept_input],
|
203 |
+
outputs=[proof_status_output, proof_details_output]
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
# Display a persistent error if the system couldn't load
|
207 |
+
gr.Markdown("**Error: SFOSR System failed to initialize. Cannot run operations. Check logs.**")
|
208 |
+
|
209 |
+
|
210 |
+
# --- Launch the App ---
|
211 |
+
if __name__ == "__main__":
|
212 |
+
demo.launch() # Share=True for public link if needed
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Add project dependencies here
|
2 |
+
# e.g., streamlit
|
3 |
+
streamlit
|
4 |
+
gradio
|
sfosr_core/__init__.py
ADDED
File without changes
|
sfosr_core/sfosr_database.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SFOSR Database Module
|
3 |
+
|
4 |
+
Обеспечивает взаимодействие с базой данных SFOSR.
|
5 |
+
Предоставляет методы для извлечения аксиом, правил вывода,
|
6 |
+
концептов и их свойств, необходимых для работы системы.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import sqlite3
|
10 |
+
import json
|
11 |
+
from typing import Dict, List, Any, Optional, Tuple, Union, Set
|
12 |
+
|
13 |
+
class SFOSRDatabase:
|
14 |
+
"""
|
15 |
+
Класс для работы с базой данных SFOSR
|
16 |
+
|
17 |
+
Предоставляет интерфейс для:
|
18 |
+
- Получения аксиом и правил вывода
|
19 |
+
- Извлечения информации о концептах
|
20 |
+
- Получения векторных связей между концептами
|
21 |
+
- Добавления новых данных в базу знаний
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, db_path="sfosr.db"):
|
25 |
+
"""Инициализация соединения с БД"""
|
26 |
+
self.db_path = db_path
|
27 |
+
self.connection = None
|
28 |
+
|
29 |
+
def connect(self):
|
30 |
+
"""Подключение к БД"""
|
31 |
+
# Возвращаем новое соединение каждый раз
|
32 |
+
# row_factory установим здесь же
|
33 |
+
connection = sqlite3.connect(self.db_path)
|
34 |
+
connection.row_factory = sqlite3.Row
|
35 |
+
return connection
|
36 |
+
|
37 |
+
# Добавляем контекстный менеджер
|
38 |
+
def __enter__(self):
|
39 |
+
self.connection = self.connect()
|
40 |
+
return self.connection
|
41 |
+
|
42 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
43 |
+
if self.connection:
|
44 |
+
self.connection.close()
|
45 |
+
self.connection = None # Сбрасываем соединение
|
46 |
+
|
47 |
+
def get_axioms(self) -> List[Dict]:
|
48 |
+
"""Получение всех аксиом из БД"""
|
49 |
+
with self as conn: # Используем with
|
50 |
+
cursor = conn.cursor()
|
51 |
+
cursor.execute("SELECT * FROM axioms")
|
52 |
+
axioms = [dict(row) for row in cursor.fetchall()]
|
53 |
+
return axioms
|
54 |
+
|
55 |
+
def get_inference_rules(self) -> List[Dict]:
|
56 |
+
"""Получение всех правил вывода из БД"""
|
57 |
+
with self as conn:
|
58 |
+
cursor = conn.cursor()
|
59 |
+
cursor.execute("SELECT id, name, description, pattern, premise_types, conclusion_types, domain FROM inference_rules")
|
60 |
+
rules = [dict(row) for row in cursor.fetchall()]
|
61 |
+
return rules
|
62 |
+
|
63 |
+
def get_concept_by_name(self, name: str) -> Optional[Dict]:
|
64 |
+
"""Поиск концепта по имени"""
|
65 |
+
with self as conn:
|
66 |
+
cursor = conn.cursor()
|
67 |
+
cursor.execute("SELECT id, name, description, domain, level FROM concepts WHERE name=?", (name,))
|
68 |
+
concept = cursor.fetchone()
|
69 |
+
return dict(concept) if concept else None
|
70 |
+
|
71 |
+
def get_all_concepts(self) -> List[Dict]:
|
72 |
+
"""Получение всех концептов из БД"""
|
73 |
+
with self as conn:
|
74 |
+
cursor = conn.cursor()
|
75 |
+
cursor.execute("SELECT id, name, description, domain, level FROM concepts")
|
76 |
+
concepts = [dict(row) for row in cursor.fetchall()]
|
77 |
+
return concepts
|
78 |
+
|
79 |
+
def get_all_concept_names(self) -> Set[str]:
|
80 |
+
"""Получение имен всех концептов из БД"""
|
81 |
+
with self as conn:
|
82 |
+
cursor = conn.cursor()
|
83 |
+
cursor.execute("SELECT name FROM concepts")
|
84 |
+
names = {row['name'] for row in cursor.fetchall()}
|
85 |
+
return names
|
86 |
+
|
87 |
+
def get_vectors_for_concept(self, concept_id: int) -> List[Dict]:
|
88 |
+
"""
|
89 |
+
Получение всех векторов, связанных с концептом
|
90 |
+
|
91 |
+
Args:
|
92 |
+
concept_id: ID концепта
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
Список векторов с именами источника и цели
|
96 |
+
"""
|
97 |
+
with self as conn:
|
98 |
+
cursor = conn.cursor()
|
99 |
+
cursor.execute("""
|
100 |
+
SELECT v.id, v.source_id, v.target_id, v.vector_type, v.axis, v.justification,
|
101 |
+
c1.name as source_name, c2.name as target_name
|
102 |
+
FROM vectors v
|
103 |
+
JOIN concepts c1 ON v.source_id = c1.id
|
104 |
+
JOIN concepts c2 ON v.target_id = c2.id
|
105 |
+
WHERE v.source_id=? OR v.target_id=?
|
106 |
+
""", (concept_id, concept_id))
|
107 |
+
vectors = [dict(row) for row in cursor.fetchall()]
|
108 |
+
return vectors
|
109 |
+
|
110 |
+
def get_concept_properties(self, concept_id: int) -> Dict[str, Any]:
|
111 |
+
"""
|
112 |
+
Получение всех свойств концепта
|
113 |
+
|
114 |
+
Args:
|
115 |
+
concept_id: ID концепта
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
Словарь свойств в формате {имя_свойства: значение}
|
119 |
+
"""
|
120 |
+
with self as conn:
|
121 |
+
cursor = conn.cursor()
|
122 |
+
cursor.execute("""
|
123 |
+
SELECT property_name, property_value
|
124 |
+
FROM concept_properties
|
125 |
+
WHERE concept_id=?
|
126 |
+
""", (concept_id,))
|
127 |
+
properties = {}
|
128 |
+
for row in cursor.fetchall():
|
129 |
+
prop_name = row['property_name']
|
130 |
+
prop_value = row['property_value']
|
131 |
+
try:
|
132 |
+
if isinstance(prop_value, str) and (prop_value.startswith('[') or prop_value.startswith('{')):
|
133 |
+
prop_value = json.loads(prop_value)
|
134 |
+
except (json.JSONDecodeError, TypeError):
|
135 |
+
pass
|
136 |
+
properties[prop_name] = prop_value
|
137 |
+
return properties
|
138 |
+
|
139 |
+
def get_complete_concept_info(self, concept_name: str) -> Optional[Dict]:
|
140 |
+
"""
|
141 |
+
Получение полной информации о концепте
|
142 |
+
|
143 |
+
Args:
|
144 |
+
concept_name: Имя концепта
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
Словарь с информацией о концепте, его свойствах и связях
|
148 |
+
"""
|
149 |
+
concept = self.get_concept_by_name(concept_name)
|
150 |
+
if not concept:
|
151 |
+
return None
|
152 |
+
|
153 |
+
concept_id = concept['id']
|
154 |
+
properties = self.get_concept_properties(concept_id)
|
155 |
+
vectors = self.get_vectors_for_concept(concept_id)
|
156 |
+
|
157 |
+
return {
|
158 |
+
"concept": concept,
|
159 |
+
"properties": properties,
|
160 |
+
"vectors": vectors
|
161 |
+
}
|
162 |
+
|
163 |
+
def get_related_concepts(self, concept_id: int, depth: int = 1) -> List[Dict]:
|
164 |
+
"""
|
165 |
+
Получение связанных концептов с заданной глубиной
|
166 |
+
|
167 |
+
Args:
|
168 |
+
concept_id: ID исходного концепта
|
169 |
+
depth: Глубина поиска связей (1 = только прямые связи)
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
Список связанных концептов
|
173 |
+
"""
|
174 |
+
if depth <= 0:
|
175 |
+
return []
|
176 |
+
|
177 |
+
# Получаем прямые связи
|
178 |
+
vectors = self.get_vectors_for_concept(concept_id)
|
179 |
+
related_ids = set()
|
180 |
+
|
181 |
+
for vector in vectors:
|
182 |
+
if vector['source_id'] != concept_id:
|
183 |
+
related_ids.add(vector['source_id'])
|
184 |
+
if vector['target_id'] != concept_id:
|
185 |
+
related_ids.add(vector['target_id'])
|
186 |
+
|
187 |
+
# Рекурсивно получаем связи с заданной глубиной
|
188 |
+
all_related = []
|
189 |
+
for related_id in related_ids:
|
190 |
+
with self as conn:
|
191 |
+
cursor = conn.cursor()
|
192 |
+
cursor.execute("SELECT * FROM concepts WHERE id=?", (related_id,))
|
193 |
+
concept = cursor.fetchone()
|
194 |
+
|
195 |
+
if concept:
|
196 |
+
related_concept = dict(concept)
|
197 |
+
all_related.append(related_concept)
|
198 |
+
|
199 |
+
# Если нужна большая глубина, рекурсивно получаем связанные концепты
|
200 |
+
if depth > 1:
|
201 |
+
deeper_related = self.get_related_concepts(related_id, depth - 1)
|
202 |
+
all_related.extend(deeper_related)
|
203 |
+
|
204 |
+
return all_related
|
205 |
+
|
206 |
+
def find_path_between_concepts(self, source_name: str, target_name: str, max_depth: int = 3) -> List[Dict]:
|
207 |
+
"""
|
208 |
+
Поиск пути между двумя концептами
|
209 |
+
|
210 |
+
Args:
|
211 |
+
source_name: Имя исходного концепта
|
212 |
+
target_name: Имя целевого концепта
|
213 |
+
max_depth: Максимальная глубина поиска
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
Список векторов, образующих путь между концептами
|
217 |
+
"""
|
218 |
+
source = self.get_concept_by_name(source_name)
|
219 |
+
target = self.get_concept_by_name(target_name)
|
220 |
+
|
221 |
+
if not source or not target:
|
222 |
+
return []
|
223 |
+
|
224 |
+
# Поиск в ширину для нахождения пути
|
225 |
+
visited_concepts = {source['id']} # Храним ID концептов, чтобы не зацикливаться
|
226 |
+
queue = [(source['id'], [])] # (id_концепта, path_из_векторов_до_него)
|
227 |
+
|
228 |
+
# Ограничиваем глубину поиска
|
229 |
+
current_depth = 0
|
230 |
+
nodes_at_current_depth = 1
|
231 |
+
nodes_at_next_depth = 0
|
232 |
+
|
233 |
+
while queue and current_depth < max_depth:
|
234 |
+
if nodes_at_current_depth == 0:
|
235 |
+
current_depth += 1
|
236 |
+
nodes_at_current_depth = nodes_at_next_depth
|
237 |
+
nodes_at_next_depth = 0
|
238 |
+
if current_depth >= max_depth: # Проверка после инкремента глубины
|
239 |
+
break
|
240 |
+
|
241 |
+
current_id, path = queue.pop(0)
|
242 |
+
nodes_at_current_depth -= 1
|
243 |
+
|
244 |
+
# Проверка, не достигли ли мы цели
|
245 |
+
if current_id == target['id']:
|
246 |
+
return path # Возвращаем список векторов
|
247 |
+
|
248 |
+
# Получаем связанные векторы для текущего концепта
|
249 |
+
# Используем get_vectors_for_concept, так как он возвращает нужные данные
|
250 |
+
connected_vectors = self.get_vectors_for_concept(current_id)
|
251 |
+
|
252 |
+
for vector in connected_vectors:
|
253 |
+
next_id = None
|
254 |
+
|
255 |
+
# Определяем следующий концепт в пути
|
256 |
+
if vector['source_id'] == current_id and vector['target_id'] not in visited_concepts:
|
257 |
+
next_id = vector['target_id']
|
258 |
+
elif vector['target_id'] == current_id and vector['source_id'] not in visited_concepts:
|
259 |
+
next_id = vector['source_id']
|
260 |
+
|
261 |
+
if next_id:
|
262 |
+
visited_concepts.add(next_id)
|
263 |
+
# Добавляем сам вектор (как словарь) в путь
|
264 |
+
new_path = path + [vector]
|
265 |
+
queue.append((next_id, new_path))
|
266 |
+
nodes_at_next_depth += 1
|
267 |
+
|
268 |
+
return [] # Путь не найден в пределах max_depth
|
269 |
+
|
270 |
+
def convert_db_vector_to_system_format(self, db_vector: Dict) -> Dict:
|
271 |
+
"""
|
272 |
+
Преобразование вектора из формата БД в формат системы SFOSR
|
273 |
+
|
274 |
+
Args:
|
275 |
+
db_vector: Вектор в формате БД
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
Вектор в формате системы SFOSR
|
279 |
+
"""
|
280 |
+
return {
|
281 |
+
"id": f"V{db_vector['id']}",
|
282 |
+
"source": db_vector['source_name'],
|
283 |
+
"target": db_vector['target_name'],
|
284 |
+
"type": db_vector['vector_type'],
|
285 |
+
"axis": db_vector['axis'],
|
286 |
+
"justification": db_vector['justification']
|
287 |
+
}
|
288 |
+
|
289 |
+
# Методы для обновления БД
|
290 |
+
|
291 |
+
def add_concept(self, name: str, description: str, domain: str, level: str) -> int:
|
292 |
+
"""
|
293 |
+
Добавление нового концепта в БД
|
294 |
+
|
295 |
+
Args:
|
296 |
+
name: Имя концепта
|
297 |
+
description: Описание концепта
|
298 |
+
domain: Домен (область знаний)
|
299 |
+
level: Уровень абстракции
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
ID добавленного концепта
|
303 |
+
"""
|
304 |
+
with self as conn:
|
305 |
+
cursor = conn.cursor()
|
306 |
+
cursor.execute("""
|
307 |
+
INSERT INTO concepts (name, description, domain, level)
|
308 |
+
VALUES (?, ?, ?, ?)
|
309 |
+
""", (name, description, domain, level))
|
310 |
+
new_id = cursor.lastrowid
|
311 |
+
conn.commit()
|
312 |
+
return new_id
|
313 |
+
|
314 |
+
def add_concept_property(self, concept_id: int, property_name: str, property_value: Union[str, List, Dict]) -> int:
|
315 |
+
"""
|
316 |
+
Добавление свойства концепта
|
317 |
+
|
318 |
+
Args:
|
319 |
+
concept_id: ID концепта
|
320 |
+
property_name: Имя свойства
|
321 |
+
property_value: Значение свойства (строка или JSON)
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
ID добавленного свойства
|
325 |
+
"""
|
326 |
+
# Если значение не строка, преобразуем в JSON
|
327 |
+
if not isinstance(property_value, str):
|
328 |
+
property_value = json.dumps(property_value)
|
329 |
+
|
330 |
+
with self as conn:
|
331 |
+
cursor = conn.cursor()
|
332 |
+
cursor.execute("""
|
333 |
+
INSERT INTO concept_properties (concept_id, property_name, property_value)
|
334 |
+
VALUES (?, ?, ?)
|
335 |
+
""", (concept_id, property_name, property_value))
|
336 |
+
new_id = cursor.lastrowid
|
337 |
+
conn.commit()
|
338 |
+
return new_id
|
339 |
+
|
340 |
+
def add_vector(self, source_id: int, target_id: int, vector_type: str,
|
341 |
+
axis: str, justification: Optional[str] = None) -> int:
|
342 |
+
"""
|
343 |
+
Добавление нового вектора (связи между концептами)
|
344 |
+
|
345 |
+
Args:
|
346 |
+
source_id: ID исходного концепта
|
347 |
+
target_id: ID целевого концепта
|
348 |
+
vector_type: Тип вектора
|
349 |
+
axis: Семантическая ось
|
350 |
+
justification: Обоснование связи
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
ID добавленного вектора
|
354 |
+
"""
|
355 |
+
with self as conn:
|
356 |
+
cursor = conn.cursor()
|
357 |
+
cursor.execute("""
|
358 |
+
INSERT INTO vectors (source_id, target_id, vector_type, axis, justification)
|
359 |
+
VALUES (?, ?, ?, ?, ?)
|
360 |
+
""", (source_id, target_id, vector_type, axis, justification))
|
361 |
+
new_id = cursor.lastrowid
|
362 |
+
conn.commit()
|
363 |
+
return new_id
|
364 |
+
|
365 |
+
def add_axiom(self, name: str, description: str, formulation: str, domain: str) -> int:
|
366 |
+
"""
|
367 |
+
Добавление новой аксиомы
|
368 |
+
|
369 |
+
Args:
|
370 |
+
name: Имя аксиомы
|
371 |
+
description: Описание аксиомы
|
372 |
+
formulation: Формальная формулировка
|
373 |
+
domain: Домен (область применения)
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
ID добавленной аксиомы
|
377 |
+
"""
|
378 |
+
with self as conn:
|
379 |
+
cursor = conn.cursor()
|
380 |
+
cursor.execute("""
|
381 |
+
INSERT INTO axioms (name, description, formulation, domain)
|
382 |
+
VALUES (?, ?, ?, ?)
|
383 |
+
""", (name, description, formulation, domain))
|
384 |
+
new_id = cursor.lastrowid
|
385 |
+
conn.commit()
|
386 |
+
return new_id
|
387 |
+
|
388 |
+
def add_inference_rule(self, name: str, description: str, pattern: str,
|
389 |
+
premise_types: str, conclusion_types: str, domain: str) -> int:
|
390 |
+
"""
|
391 |
+
Добавление нового правила вывода
|
392 |
+
|
393 |
+
Args:
|
394 |
+
name: Имя правила
|
395 |
+
description: Описание правила
|
396 |
+
pattern: Паттерн вывода
|
397 |
+
premise_types: Типы посылок
|
398 |
+
conclusion_types: Типы выводов
|
399 |
+
domain: Домен (область применения)
|
400 |
+
|
401 |
+
Returns:
|
402 |
+
ID добавленного правила
|
403 |
+
"""
|
404 |
+
with self as conn:
|
405 |
+
cursor = conn.cursor()
|
406 |
+
cursor.execute("""
|
407 |
+
INSERT INTO inference_rules (name, description, pattern, premise_types,
|
408 |
+
conclusion_types, domain)
|
409 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
410 |
+
""", (name, description, pattern, premise_types, conclusion_types, domain))
|
411 |
+
new_id = cursor.lastrowid
|
412 |
+
conn.commit()
|
413 |
+
return new_id
|
414 |
+
|
415 |
+
def get_all_vectors(self):
|
416 |
+
"""Получить все векторы из базы данных"""
|
417 |
+
query = """
|
418 |
+
SELECT
|
419 |
+
v.id,
|
420 |
+
v.source_id,
|
421 |
+
v.target_id,
|
422 |
+
v.vector_type,
|
423 |
+
v.axis,
|
424 |
+
v.justification,
|
425 |
+
s.name as source_name,
|
426 |
+
t.name as target_name,
|
427 |
+
v.is_valid
|
428 |
+
FROM vectors v
|
429 |
+
JOIN concepts s ON v.source_id = s.id
|
430 |
+
JOIN concepts t ON v.target_id = t.id
|
431 |
+
WHERE v.is_valid = 1
|
432 |
+
"""
|
433 |
+
|
434 |
+
with self as conn:
|
435 |
+
cursor = conn.cursor()
|
436 |
+
cursor.execute(query)
|
437 |
+
rows = cursor.fetchall()
|
438 |
+
|
439 |
+
vectors = []
|
440 |
+
for row in rows:
|
441 |
+
vector = {
|
442 |
+
"id": f"V{row[0]}", # Добавляем префикс V к ID
|
443 |
+
"source_name": row[6],
|
444 |
+
"target_name": row[7],
|
445 |
+
"type": row[3], # vector_type из БД становится type в объекте
|
446 |
+
"axis": row[4],
|
447 |
+
"justification": row[5],
|
448 |
+
"is_valid": bool(row[8])
|
449 |
+
}
|
450 |
+
vectors.append(vector)
|
451 |
+
|
452 |
+
return vectors
|
sfosr_core/sfosr_system.py
ADDED
@@ -0,0 +1,1403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SFOSR Integrated System (with Binary Validity)
|
3 |
+
|
4 |
+
Этот модуль объединяет основные компоненты системы SFOSR:
|
5 |
+
- Анализатор структуры (`SFOSRAnalyzer`)
|
6 |
+
- Верификатор контрактов (`ContractVerifier`)
|
7 |
+
- Систему построения доказательств (`ProofSystem`)
|
8 |
+
|
9 |
+
для обеспечения комплексной обработки и формальной оценки
|
10 |
+
смысловых структур на основе бинарной валидности.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import json
|
14 |
+
import subprocess
|
15 |
+
import os
|
16 |
+
from typing import Dict, List, Any, Tuple, Optional, Set, Union
|
17 |
+
from .sfosr_database import SFOSRDatabase # Use relative import within the package
|
18 |
+
|
19 |
+
# Конфигурация системы
|
20 |
+
SFOSR_CONFIG = {
|
21 |
+
"version": "0.4.0",
|
22 |
+
"description": "Integrated SFOSR System",
|
23 |
+
"components": ["analyzer", "verifier", "proof_system"],
|
24 |
+
"debug_mode": False,
|
25 |
+
"auto_update_plausibility": True # Автоматическое обновление plausibility
|
26 |
+
}
|
27 |
+
|
28 |
+
# Общие типы векторов
|
29 |
+
VECTOR_TYPES = {
|
30 |
+
"Causality": {"weight": 2.0, "requires_justification": True, "description": "Причинно-следственная связь"},
|
31 |
+
"Implication": {"weight": 1.8, "requires_justification": True, "description": "Логическое следование (если-то)"},
|
32 |
+
"Transformation": {"weight": 1.5, "requires_justification": False, "description": "Превращение из одного состояния в другое"},
|
33 |
+
"Goal": {"weight": 1.3, "requires_justification": False, "description": "Целеполагание, намерение"},
|
34 |
+
"Prevention": {"weight": 1.3, "requires_justification": False, "description": "Предотвращение нежелательного исхода"},
|
35 |
+
"Contrast": {"weight": 1.2, "requires_justification": False, "description": "Противопоставление"},
|
36 |
+
"Comparison": {"weight": 1.0, "requires_justification": False, "description": "Сравнение элементов"},
|
37 |
+
"Inclusion": {"weight": 0.8, "requires_justification": False, "description": "Отношение часть-целое"},
|
38 |
+
"Attribution": {"weight": 0.7, "requires_justification": False, "description": "Приписывание свойства объекту"},
|
39 |
+
"Temporal": {"weight": 1.1, "requires_justification": False, "description": "Временная последовательность"},
|
40 |
+
"Qualification": {"weight": 0.6, "requires_justification": False, "description": "Ограничение или уточнение"},
|
41 |
+
"Definition": {"weight": 1.4, "requires_justification": False, "description": "Определение понятия"},
|
42 |
+
"PartOf": {"constraints": [], "requires_justification": False},
|
43 |
+
"Mechanism": {"constraints": [], "requires_justification": True},
|
44 |
+
"Example": {"constraints": [], "requires_justification": False},
|
45 |
+
"Requirement": {"constraints": [], "requires_justification": True},
|
46 |
+
"Action": {"constraints": [], "requires_justification": False},
|
47 |
+
"Capability": {"constraints": [], "requires_justification": False},
|
48 |
+
"PropertyOf": {"constraints": [], "requires_justification": False},
|
49 |
+
"Purpose": {"constraints": [], "requires_justification": False},
|
50 |
+
"Governs": {"constraints": [], "requires_justification": False},
|
51 |
+
"Contains": {"constraints": [], "requires_justification": False},
|
52 |
+
"Represents": {"constraints": [], "requires_justification": False},
|
53 |
+
"Context": {"constraints": [], "requires_justification": False},
|
54 |
+
"IsA": {"constraints": [], "requires_justification": False},
|
55 |
+
# "ActsOn": {"constraints": [], "requires_justification": False}, # Removed as it's not used now
|
56 |
+
"Dependency": {"constraints": [], "requires_justification": True}
|
57 |
+
}
|
58 |
+
|
59 |
+
# Интерфейс для интеграции компонентов
|
60 |
+
class SFOSRSystem:
|
61 |
+
"""
|
62 |
+
Основной класс интегрированной системы SFOSR (на бинарной валидности)
|
63 |
+
|
64 |
+
Объединяет:
|
65 |
+
- Анализ структуры векторов
|
66 |
+
- Проверку контрактов и определение валидности
|
67 |
+
- Построение валидных доказательств
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, db_path="sfosr.db", debug=False):
|
71 |
+
self.db_path = db_path
|
72 |
+
self.db = SFOSRDatabase(db_path) # Database connection
|
73 |
+
self._analyzer = SFOSRAnalyzer()
|
74 |
+
|
75 |
+
# Prepare data for ContractVerifier
|
76 |
+
all_concepts = self.db.get_all_concepts()
|
77 |
+
known_concepts_names = {c['name'] for c in all_concepts}
|
78 |
+
concepts_data_map = {c['name']: c for c in all_concepts}
|
79 |
+
|
80 |
+
self._verifier = ContractVerifier(known_concepts=known_concepts_names, concepts_data=concepts_data_map)
|
81 |
+
self._proof_system = ProofSystem(db_conn=self.db) # Pass db connection
|
82 |
+
self.concept_graph = None
|
83 |
+
self.debug = debug
|
84 |
+
|
85 |
+
# Load inference rules from DB
|
86 |
+
try:
|
87 |
+
db_rules = self.db.get_inference_rules()
|
88 |
+
if db_rules:
|
89 |
+
self._proof_system.load_rules(db_rules)
|
90 |
+
except Exception as e:
|
91 |
+
if self.debug:
|
92 |
+
print(f"Error loading inference rules from database: {str(e)}")
|
93 |
+
|
94 |
+
# Графы
|
95 |
+
self.concept_graph = {}
|
96 |
+
|
97 |
+
def process(self, input_data):
|
98 |
+
"""
|
99 |
+
Основной метод обработки входных данных (с бинарной валидностью)
|
100 |
+
|
101 |
+
Последовательно выполняет:
|
102 |
+
1. Анализ структуры
|
103 |
+
2. Проверку контрактов (определение is_valid)
|
104 |
+
3. Построение доказательств (если применимо, определение is_valid)
|
105 |
+
(Использует только валидированные векторы из input_data, без обогащения из БД)
|
106 |
+
|
107 |
+
Args:
|
108 |
+
input_data: Словарь с текстом и векторами SFOSR
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
Dict: Результаты обработки (с полями is_valid)
|
112 |
+
"""
|
113 |
+
# Шаг 1: Анализ структуры
|
114 |
+
analysis_result = self._analyzer.analyze(input_data)
|
115 |
+
self.concept_graph = analysis_result["concept_graph"]
|
116 |
+
|
117 |
+
# Если анализ не прошел
|
118 |
+
if analysis_result["analysis_status"] != "Completed":
|
119 |
+
return {
|
120 |
+
"status": "Error",
|
121 |
+
"message": f"Analysis failed: {analysis_result['analysis_status']}",
|
122 |
+
"details": {
|
123 |
+
"validation_issues": analysis_result["validation_issues"]
|
124 |
+
}
|
125 |
+
}
|
126 |
+
|
127 |
+
# Получаем инстансы из контекста, если они есть
|
128 |
+
instance_definitions = input_data.get("instance_definitions", {})
|
129 |
+
|
130 |
+
# Шаг 2: Проверка контрактов
|
131 |
+
vectors_to_verify = analysis_result["vectors_analyzed"]
|
132 |
+
# Передаем инстансы в верификатор
|
133 |
+
verification_result = self._verifier.verify_all(vectors_to_verify, instance_definitions)
|
134 |
+
|
135 |
+
# Собираем только валидные векторы для системы доказательств
|
136 |
+
valid_input_vectors = []
|
137 |
+
vectors_data = verification_result["vectors_data"]
|
138 |
+
for vector in vectors_to_verify:
|
139 |
+
v_id = vector.get("id")
|
140 |
+
# Используем get для безопасного доступа и проверяем наличие ключа 'vector'
|
141 |
+
vector_dict = vectors_data.get(v_id, {}).get('vector')
|
142 |
+
if vector_dict and vectors_data[v_id].get("is_valid", False):
|
143 |
+
valid_input_vectors.append(vector_dict) # Добавляем исходный вектор
|
144 |
+
|
145 |
+
# --- Генерация временных IsA векторов ---
|
146 |
+
temporary_isa_vectors = []
|
147 |
+
for instance_id, definition in instance_definitions.items():
|
148 |
+
general_type = definition.get('is_a')
|
149 |
+
instance_label = definition.get('label', instance_id) # Use label or ID
|
150 |
+
if general_type:
|
151 |
+
# Проверяем, существует ли общий тип в БД
|
152 |
+
if self.db.get_concept_by_name(general_type):
|
153 |
+
temporary_isa_vectors.append({
|
154 |
+
"id": f"isa_{instance_id}", # Уникальный временный ID
|
155 |
+
"source": instance_id, # Используем временный ID
|
156 |
+
"target": general_type, # Ссылка на общий тип в БД
|
157 |
+
"type": "IsA",
|
158 |
+
"axis": "classification",
|
159 |
+
"justification": f"Instance '{instance_label}' defined as type '{general_type}' in input context.",
|
160 |
+
"is_valid": True # Считаем эти связи априори валидными для доказательства
|
161 |
+
})
|
162 |
+
else:
|
163 |
+
print(f"Warning: General type '{general_type}' for instance '{instance_id}' not found in DB. Skipping IsA vector generation.")
|
164 |
+
# ----------------------------------------
|
165 |
+
|
166 |
+
# Базовый результат обработки
|
167 |
+
result = {
|
168 |
+
"status": "Success",
|
169 |
+
"input_text": input_data.get("text", ""),
|
170 |
+
"analysis": {
|
171 |
+
"status": analysis_result["analysis_status"],
|
172 |
+
"is_compilable": analysis_result["is_compilable"],
|
173 |
+
"graph_metrics": analysis_result["graph_metrics"]
|
174 |
+
},
|
175 |
+
"verification": {
|
176 |
+
"total_vectors": verification_result["total_vectors_processed"],
|
177 |
+
"valid_count": verification_result["valid_count"],
|
178 |
+
"compliance_rate": verification_result["compliance_rate"],
|
179 |
+
"vectors_data": verification_result["vectors_data"]
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
# Шаг 3: Построение доказательств
|
184 |
+
vectors_for_proof = valid_input_vectors + temporary_isa_vectors
|
185 |
+
# Запускаем, если есть запрос И есть ХОТЬ КАКИЕ-ТО векторы (входные или IsA)
|
186 |
+
if "proof_query" in input_data and vectors_for_proof:
|
187 |
+
query = input_data["proof_query"]
|
188 |
+
source = query.get("source")
|
189 |
+
target = query.get("target")
|
190 |
+
|
191 |
+
if source and target:
|
192 |
+
proof_result = self._proof_system.construct_proof(
|
193 |
+
vectors_for_proof, source, target
|
194 |
+
)
|
195 |
+
result["proof"] = proof_result
|
196 |
+
else: # Нет source/target
|
197 |
+
result["proof"] = {"status": "Failed", "reason": "Missing source or target in proof query", "is_valid": False}
|
198 |
+
# else: # Нет proof_query или нет векторов - proof не создается
|
199 |
+
# pass
|
200 |
+
|
201 |
+
return result
|
202 |
+
|
203 |
+
def analyze(self, input_data):
|
204 |
+
"""Удобный метод для выполнения только анализа"""
|
205 |
+
return self._analyzer.analyze(input_data)
|
206 |
+
|
207 |
+
def verify(self, input_data):
|
208 |
+
"""Удобный метод для выполнения только верификации"""
|
209 |
+
vectors = input_data.get("vectors", [])
|
210 |
+
# Сначала базовый анализ для получения структурно валидных векторов
|
211 |
+
analysis_result = self._analyzer.analyze(input_data)
|
212 |
+
# Передаем пустой словарь instance_definitions, т.к. verify не работает с контекстом
|
213 |
+
return self._verifier.verify_all(analysis_result["vectors_analyzed"], instance_definitions={})
|
214 |
+
|
215 |
+
def prove(self, input_data, source, target):
|
216 |
+
"""Удобный метод для построения доказательства.
|
217 |
+
|
218 |
+
Анализирует, верифицирует и строит доказательство, используя только
|
219 |
+
валидированные векторы из input_data (без обогащения из БД).
|
220 |
+
"""
|
221 |
+
# Сначала анализ
|
222 |
+
analysis_res = self.analyze(input_data)
|
223 |
+
if analysis_res["analysis_status"] != "Completed":
|
224 |
+
return {"status": "Failed", "reason": "Analysis failed"}
|
225 |
+
|
226 |
+
# Получаем список векторов, прошедших анализ
|
227 |
+
vectors_analyzed = analysis_res.get("vectors_analyzed", [])
|
228 |
+
if not vectors_analyzed:
|
229 |
+
return {"status": "Failed", "reason": "No vectors passed analysis"}
|
230 |
+
|
231 |
+
# Затем верификация этих векторов
|
232 |
+
# Передаем пустой instance_definitions, т.к. prove работает с готовым input_data
|
233 |
+
# Хотя, возможно, стоило бы передавать реальный instance_definitions из input_data?
|
234 |
+
# Пока оставим пустым для совместимости.
|
235 |
+
verification_res = self._verifier.verify_all(vectors_analyzed, instance_definitions={})
|
236 |
+
vectors_data = verification_res.get("vectors_data", {})
|
237 |
+
|
238 |
+
# Извлекаем валидные векторы, ИТЕРРИРУЯ ПО ИСХОДНОМУ СПИСКУ
|
239 |
+
valid_vectors = [
|
240 |
+
vector # Берем исходный вектор
|
241 |
+
for vector in vectors_analyzed # Итерируем по результатам анализа
|
242 |
+
if vectors_data.get(vector.get("id", ""), {}).get("is_valid", False) # Проверяем валидность в результатах верификации
|
243 |
+
]
|
244 |
+
|
245 |
+
if not valid_vectors:
|
246 |
+
return {"status": "Failed", "reason": "No valid vectors after verification"}
|
247 |
+
|
248 |
+
# Enrichment is disabled, use valid_vectors directly
|
249 |
+
vectors_for_proof = valid_vectors
|
250 |
+
|
251 |
+
return self._proof_system.construct_proof(vectors_for_proof, source, target)
|
252 |
+
|
253 |
+
def get_concept_info(self, concept_name):
|
254 |
+
"""
|
255 |
+
Получение информации о концепте из БД
|
256 |
+
|
257 |
+
Args:
|
258 |
+
concept_name: Имя концепта
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
Dict: Информация о концепте или None
|
262 |
+
"""
|
263 |
+
return self.db.get_complete_concept_info(concept_name)
|
264 |
+
|
265 |
+
def find_related_concepts(self, concept_name, depth=1):
|
266 |
+
"""
|
267 |
+
Поиск связанных концептов
|
268 |
+
|
269 |
+
Args:
|
270 |
+
concept_name: Имя концепта
|
271 |
+
depth: Глубина поиска
|
272 |
+
|
273 |
+
Returns:
|
274 |
+
List: Список связанных концептов
|
275 |
+
"""
|
276 |
+
concept = self.db.get_concept_by_name(concept_name)
|
277 |
+
if not concept:
|
278 |
+
return []
|
279 |
+
|
280 |
+
return self.db.get_related_concepts(concept["id"], depth)
|
281 |
+
|
282 |
+
def add_concept_to_db(self, name, description, domain, level):
|
283 |
+
"""
|
284 |
+
Добавление нового концепта в БД
|
285 |
+
|
286 |
+
Args:
|
287 |
+
name: Имя концепта
|
288 |
+
description: Описание
|
289 |
+
domain: Домен (область знаний)
|
290 |
+
level: Уровень абстракции
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
int: ID добавленного концепта
|
294 |
+
"""
|
295 |
+
return self.db.add_concept(name, description, domain, level)
|
296 |
+
|
297 |
+
def add_vector_to_db(self, source_name, target_name, vector_type, axis, justification=None):
|
298 |
+
"""
|
299 |
+
Добавление нового вектора в БД
|
300 |
+
|
301 |
+
Args:
|
302 |
+
source_name: Имя исходного концепта
|
303 |
+
target_name: Имя целевого концепта
|
304 |
+
vector_type: Тип вектора
|
305 |
+
axis: Ось
|
306 |
+
justification: Обоснование
|
307 |
+
|
308 |
+
Returns:
|
309 |
+
int: ID добавленного вектора или None в случае ошибки
|
310 |
+
"""
|
311 |
+
source = self.db.get_concept_by_name(source_name)
|
312 |
+
target = self.db.get_concept_by_name(target_name)
|
313 |
+
|
314 |
+
if not source or not target:
|
315 |
+
return None
|
316 |
+
|
317 |
+
return self.db.add_vector(source["id"], target["id"], vector_type, axis, justification)
|
318 |
+
|
319 |
+
# Реализация компонентов системы
|
320 |
+
|
321 |
+
class SFOSRAnalyzer:
|
322 |
+
"""
|
323 |
+
Анализатор структуры векторов SFOSR
|
324 |
+
|
325 |
+
Отвечает за:
|
326 |
+
- Проверку синтаксиса и базовой структуры векторов
|
327 |
+
- Проверку компилируемости (наличие необходимых полей)
|
328 |
+
- Построение графа концептов
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, vector_types=None):
|
332 |
+
"""Инициализация анализатора"""
|
333 |
+
self.vector_types = vector_types or VECTOR_TYPES
|
334 |
+
|
335 |
+
def build_concept_graph(self, vectors):
|
336 |
+
"""
|
337 |
+
Строит граф концептов и связей между ними
|
338 |
+
|
339 |
+
Args:
|
340 |
+
vectors: Список векторов SFOSR
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Dict: Структура графа с узлами и связями
|
344 |
+
"""
|
345 |
+
# Структура для хранения графа
|
346 |
+
graph = {
|
347 |
+
"nodes": set(), # уникальные концепты
|
348 |
+
"edges": [], # связи (кортежи source, target, vector_id)
|
349 |
+
"adjacency": {}, # словарь смежности для быстрого доступа
|
350 |
+
}
|
351 |
+
|
352 |
+
# Собираем все уникальные концепты и ребра
|
353 |
+
all_nodes = set()
|
354 |
+
for vector in vectors:
|
355 |
+
source = vector.get("source")
|
356 |
+
target = vector.get("target")
|
357 |
+
vector_id = vector.get("id")
|
358 |
+
|
359 |
+
if source:
|
360 |
+
all_nodes.add(source)
|
361 |
+
if source not in graph["adjacency"]:
|
362 |
+
graph["adjacency"][source] = {"out": [], "in": []}
|
363 |
+
|
364 |
+
if target:
|
365 |
+
all_nodes.add(target)
|
366 |
+
if target not in graph["adjacency"]:
|
367 |
+
graph["adjacency"][target] = {"out": [], "in": []}
|
368 |
+
|
369 |
+
if source and target and vector_id:
|
370 |
+
edge = (source, target, vector_id)
|
371 |
+
graph["edges"].append(edge)
|
372 |
+
graph["adjacency"][source]["out"].append((target, vector_id))
|
373 |
+
graph["adjacency"][target]["in"].append((source, vector_id))
|
374 |
+
|
375 |
+
graph["nodes"] = all_nodes
|
376 |
+
|
377 |
+
return graph
|
378 |
+
|
379 |
+
def validate_vector_structure(self, vector):
|
380 |
+
"""
|
381 |
+
Проверяет структуру вектора на соответствие базовым требованиям
|
382 |
+
|
383 |
+
Args:
|
384 |
+
vector: Словарь с данными вектора
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
Tuple[bool, Optional[str]]: (валидность, сообщение об ошибке)
|
388 |
+
"""
|
389 |
+
required_keys = ["id", "source", "target", "type", "axis"]
|
390 |
+
missing_keys = [key for key in required_keys if key not in vector or not vector[key]]
|
391 |
+
|
392 |
+
if missing_keys:
|
393 |
+
return False, f"Vector {vector.get('id', 'Unknown')} missing keys: {', '.join(missing_keys)}"
|
394 |
+
|
395 |
+
# Проверяем, существует ли указанный тип вектора
|
396 |
+
vector_type = vector.get("type")
|
397 |
+
if vector_type not in self.vector_types:
|
398 |
+
return False, f"Vector {vector.get('id', 'Unknown')} has invalid type: {vector_type}"
|
399 |
+
|
400 |
+
return True, None
|
401 |
+
|
402 |
+
def validate_compilability(self, vector):
|
403 |
+
"""
|
404 |
+
Проверяет на компилируемость (достаточность данных)
|
405 |
+
|
406 |
+
Args:
|
407 |
+
vector: Словарь с данными вектора
|
408 |
+
|
409 |
+
Returns:
|
410 |
+
Tuple[bool, Optional[str]]: (компилируемость, сообщение об ошибке)
|
411 |
+
"""
|
412 |
+
vector_type = vector.get("type")
|
413 |
+
|
414 |
+
# Проверяем требования обоснования в зависимости от типа
|
415 |
+
if (vector_type in self.vector_types and
|
416 |
+
self.vector_types[vector_type]["requires_justification"]):
|
417 |
+
if not vector.get("justification"):
|
418 |
+
return False, f"Vector {vector.get('id', 'Unknown')} requires justification for type {vector_type}."
|
419 |
+
|
420 |
+
return True, None
|
421 |
+
|
422 |
+
def analyze(self, input_data):
|
423 |
+
"""
|
424 |
+
Главная функция анализа структуры SFOSR (упрощенная)
|
425 |
+
|
426 |
+
Args:
|
427 |
+
input_data: Словарь с текстом и векторами
|
428 |
+
|
429 |
+
Returns:
|
430 |
+
Dict: Результаты анализа (валидация и граф)
|
431 |
+
"""
|
432 |
+
input_text = input_data.get("text", "N/A")
|
433 |
+
vectors = input_data.get("vectors", [])
|
434 |
+
|
435 |
+
valid_vectors = []
|
436 |
+
validation_issues = []
|
437 |
+
analysis_status = "Completed"
|
438 |
+
|
439 |
+
# 1. Валидация структуры и компилируемости каждого вектора
|
440 |
+
for vector in vectors:
|
441 |
+
is_struct_valid, struct_error = self.validate_vector_structure(vector)
|
442 |
+
if not is_struct_valid:
|
443 |
+
validation_issues.append(struct_error)
|
444 |
+
analysis_status = "Validation Error"
|
445 |
+
continue # Невалидную структуру дальше не проверяем
|
446 |
+
|
447 |
+
is_comp_valid, comp_error = self.validate_compilability(vector)
|
448 |
+
if not is_comp_valid:
|
449 |
+
validation_issues.append(comp_error)
|
450 |
+
# Продолжаем анализ, но помечаем проблему
|
451 |
+
|
452 |
+
# Собираем только структурно валидные векторы
|
453 |
+
valid_vectors.append(vector)
|
454 |
+
|
455 |
+
# Определяем компилируемость по наличию проблем
|
456 |
+
is_compilable = len(validation_issues) == 0
|
457 |
+
if not is_compilable and analysis_status == "Completed":
|
458 |
+
analysis_status = "Compilability Error" # Если были только проблемы компилируемости
|
459 |
+
|
460 |
+
# 2. Построение графа концептов (только из структурно валидных векторов)
|
461 |
+
graph = self.build_concept_graph(valid_vectors)
|
462 |
+
|
463 |
+
# 3. Формирование упрощенного результата
|
464 |
+
result = {
|
465 |
+
"input_text": input_text,
|
466 |
+
"analysis_status": analysis_status,
|
467 |
+
"is_compilable": is_compilable,
|
468 |
+
"validation_issues": validation_issues,
|
469 |
+
"graph_metrics": { # Упрощенные метрики графа
|
470 |
+
"concepts_count": len(graph["nodes"]),
|
471 |
+
"connections_count": len(graph["edges"]),
|
472 |
+
},
|
473 |
+
"vectors_analyzed": valid_vectors, # Содержит только структурно валидные
|
474 |
+
"concept_graph": graph
|
475 |
+
}
|
476 |
+
|
477 |
+
return result
|
478 |
+
|
479 |
+
class ContractVerifier:
|
480 |
+
"""
|
481 |
+
Верификатор контрактов векторов SFOSR
|
482 |
+
|
483 |
+
Проверяет соответствие векторов формальным контрактам,
|
484 |
+
определяет бинарную валидность (`is_valid`) вектора
|
485 |
+
и собирает метаданные.
|
486 |
+
"""
|
487 |
+
|
488 |
+
def __init__(self, contract_types=None, known_concepts: Optional[Set[str]] = None, concepts_data: Optional[Dict[str, Dict]] = None):
|
489 |
+
"""Инициализация верификатора с известными концептами и их данными (уровнями)."""
|
490 |
+
self.contract_types = contract_types or set(VECTOR_TYPES.keys())
|
491 |
+
self.known_concepts = known_concepts or set()
|
492 |
+
# --- Сохраняем данные об уровнях ---
|
493 |
+
self.concepts_data = concepts_data or {}
|
494 |
+
# ----------------------------------
|
495 |
+
self.axis_registry = set()
|
496 |
+
|
497 |
+
def verify_vector_contract(self, vector: Dict[str, Any], instance_definitions: Dict[str, Dict]) -> Tuple[bool, List[str], Dict[str, Any]]:
|
498 |
+
"""Проверяет отдельный вектор на ��оответствие контрактам"""
|
499 |
+
issues = []
|
500 |
+
metadata = {}
|
501 |
+
is_valid = True # Начинаем с предположения о валидности
|
502 |
+
|
503 |
+
# --- Проверка существования концептов и их типов ---
|
504 |
+
source_name = vector.get("source")
|
505 |
+
target_name = vector.get("target")
|
506 |
+
vector_type = vector.get("type")
|
507 |
+
vector_id = vector.get("id", "Unknown")
|
508 |
+
|
509 |
+
# --- Получаем реальные ТИПЫ концептов для проверки ---
|
510 |
+
source_type_name = source_name
|
511 |
+
target_type_name = target_name
|
512 |
+
is_source_instance = False
|
513 |
+
is_target_instance = False
|
514 |
+
|
515 |
+
if source_name in instance_definitions:
|
516 |
+
source_type_name = instance_definitions[source_name].get("is_a")
|
517 |
+
is_source_instance = True
|
518 |
+
if not source_type_name:
|
519 |
+
issues.append(f"Instance '{source_name}' in vector {vector_id} has no 'is_a' type defined in context.")
|
520 |
+
is_valid = False
|
521 |
+
source_type_name = None # Не можем проверить дальше
|
522 |
+
|
523 |
+
if target_name in instance_definitions:
|
524 |
+
target_type_name = instance_definitions[target_name].get("is_a")
|
525 |
+
is_target_instance = True
|
526 |
+
if not target_type_name:
|
527 |
+
issues.append(f"Instance '{target_name}' in vector {vector_id} has no 'is_a' type defined in context.")
|
528 |
+
is_valid = False
|
529 |
+
target_type_name = None # Не можем проверить дальше
|
530 |
+
# ----------------------------------------------------
|
531 |
+
|
532 |
+
source_concept_data = None
|
533 |
+
target_concept_data = None
|
534 |
+
|
535 |
+
if source_type_name and is_valid:
|
536 |
+
source_concept_data = self.concepts_data.get(source_type_name)
|
537 |
+
if not source_concept_data:
|
538 |
+
issues.append(f"Source concept/type '{source_type_name}' (for '{source_name}') not found in known concepts for vector {vector_id}.")
|
539 |
+
is_valid = False
|
540 |
+
|
541 |
+
if target_type_name and is_valid:
|
542 |
+
target_concept_data = self.concepts_data.get(target_type_name)
|
543 |
+
if not target_concept_data:
|
544 |
+
issues.append(f"Target concept/type '{target_type_name}' (for '{target_name}') not found in known concepts for vector {vector_id}.")
|
545 |
+
is_valid = False
|
546 |
+
|
547 |
+
# --- Проверка контрактов типа Transformation ---
|
548 |
+
if is_valid and vector_type == "Transformation":
|
549 |
+
if source_name == target_name:
|
550 |
+
issues.append(f"Transformation vector {vector_id} cannot have the same source and target ('{source_name}').")
|
551 |
+
is_valid = False
|
552 |
+
|
553 |
+
# --- Проверка контракта для Causality (разные уровни) ---
|
554 |
+
if is_valid and vector_type == "Causality" and "level" in vector.get("axis", ""):
|
555 |
+
if source_concept_data and target_concept_data:
|
556 |
+
source_level = source_concept_data.get('level')
|
557 |
+
target_level = target_concept_data.get('level')
|
558 |
+
if source_level and target_level and source_level == target_level:
|
559 |
+
issues.append(f"Causality vector {vector_id} ('{source_type_name}' -> '{target_type_name}') links concepts on the same level '{source_level}' with axis containing 'level'.")
|
560 |
+
is_valid = False
|
561 |
+
|
562 |
+
# --- Добавить другие специфичные для типов векторов проверки ---
|
563 |
+
# Например, для ActsOn: source должен быть подтипом Action, target - подтипом Object?
|
564 |
+
# Это потребует иерархии в БД или более сложной логики.
|
565 |
+
|
566 |
+
# Регистрация осей остается
|
567 |
+
if vector.get("axis") and vector["axis"] not in self.axis_registry:
|
568 |
+
self.axis_registry.add(vector["axis"])
|
569 |
+
|
570 |
+
# Добавляем сами данные вектора в метаданные для использования в `prove`
|
571 |
+
# metadata['vector'] = vector # Убрали - теперь prove получает исходный список
|
572 |
+
|
573 |
+
return is_valid, issues, metadata
|
574 |
+
|
575 |
+
def verify_all(self, vectors: List[Dict[str, Any]], instance_definitions: Dict[str, Dict]) -> Dict[str, Any]:
|
576 |
+
"""Проверка всех векторов, агрегация валидности и метаданных"""
|
577 |
+
vectors_data = {}
|
578 |
+
valid_count = 0
|
579 |
+
processed_count = 0
|
580 |
+
|
581 |
+
for vector in vectors:
|
582 |
+
processed_count += 1
|
583 |
+
vector_id = vector.get("id", f"unknown_{processed_count}")
|
584 |
+
# Передаем instance_definitions в проверку контракта
|
585 |
+
is_valid, issues, metadata = self.verify_vector_contract(vector, instance_definitions)
|
586 |
+
|
587 |
+
vectors_data[vector_id] = {
|
588 |
+
"vector": vector,
|
589 |
+
"is_valid": is_valid,
|
590 |
+
"issues": issues,
|
591 |
+
"metadata": metadata
|
592 |
+
}
|
593 |
+
|
594 |
+
if is_valid:
|
595 |
+
valid_count += 1
|
596 |
+
|
597 |
+
# Формируем отчет
|
598 |
+
report = {
|
599 |
+
"total_vectors_processed": processed_count,
|
600 |
+
"valid_count": valid_count,
|
601 |
+
"compliance_rate": round(valid_count / processed_count, 3) if processed_count > 0 else 0.0,
|
602 |
+
"vectors_data": vectors_data # Основные данные теперь здесь
|
603 |
+
}
|
604 |
+
|
605 |
+
return report
|
606 |
+
|
607 |
+
class ProofSystem:
|
608 |
+
"""
|
609 |
+
Система построения доказательств SFOSR
|
610 |
+
|
611 |
+
Отвечает за:
|
612 |
+
- Построение доказательств на основе ВАЛИДНЫХ векторов (и данных из БД)
|
613 |
+
- Проверку итоговой валидности (`is_valid`) доказательств
|
614 |
+
- Поиск путей доказательства между концептами (с использованием БД)
|
615 |
+
"""
|
616 |
+
|
617 |
+
def __init__(self, db_conn):
|
618 |
+
"""Инициализация системы доказательств.
|
619 |
+
|
620 |
+
Args:
|
621 |
+
db_conn: Экземпляр SFOSRDatabase для доступа к БД.
|
622 |
+
"""
|
623 |
+
self.db_conn = db_conn # Store the database connection
|
624 |
+
# Базовые правила вывода (с бинарной валидностью)
|
625 |
+
self.inference_rules = {
|
626 |
+
"chain_rule": {
|
627 |
+
"pattern": "A → B, B → C ⊢ A → C",
|
628 |
+
"premise_types": ["Implication", "Implication"],
|
629 |
+
"conclusion_type": "Implication",
|
630 |
+
"domain": "logical_inference"
|
631 |
+
},
|
632 |
+
"causality_transfer": {
|
633 |
+
"pattern": "A → B (Causality), B → C (Causality) ⊢ A → C (Causality)",
|
634 |
+
"premise_types": ["Causality", "Causality"],
|
635 |
+
"conclusion_type": "Causality",
|
636 |
+
"domain": "causal_inference"
|
637 |
+
},
|
638 |
+
"implication_causality_chain": {
|
639 |
+
"pattern": "A → B (Implication), B → C (Causality) ⊢ A → C (Causality)",
|
640 |
+
"premise_types": ["Implication", "Causality"],
|
641 |
+
"conclusion_type": "Causality",
|
642 |
+
"domain": "mixed_inference"
|
643 |
+
},
|
644 |
+
# --- New Rule ---
|
645 |
+
"part_of_transitivity": {
|
646 |
+
"pattern": "A PartOf B, B PartOf C ⊢ A PartOf C",
|
647 |
+
"premise_types": ["PartOf", "PartOf"],
|
648 |
+
"conclusion_type": "PartOf",
|
649 |
+
"domain": "mereology"
|
650 |
+
},
|
651 |
+
# --- НОВОЕ ПРАВИЛО ---
|
652 |
+
"action_causality_chain": {
|
653 |
+
"pattern": "A -> B (Action), B -> C (Causality) |- A -> C (Causality)",
|
654 |
+
"premise_types": ["Action", "Causality"],
|
655 |
+
"conclusion_type": "Causality",
|
656 |
+
"domain": "action_inference"
|
657 |
+
},
|
658 |
+
# --- ЕЩЕ ОДНО НОВОЕ ПРАВИЛО ---
|
659 |
+
"action_isa_generalization": {
|
660 |
+
"pattern": "A -> B_inst (Action), B_inst IsA B_type |- A -> B_type (Action)",
|
661 |
+
"premise_types": ["Action", "IsA"],
|
662 |
+
"conclusion_type": "Action", # Результат - обобщенное действие
|
663 |
+
"domain": "inheritance_inference"
|
664 |
+
}
|
665 |
+
}
|
666 |
+
|
667 |
+
# Кэш для хранения построенных доказательств (только структура вывода)
|
668 |
+
self.proof_cache = {}
|
669 |
+
|
670 |
+
def load_rules(self, db_rules):
|
671 |
+
"""
|
672 |
+
Загрузка правил вывода из БД (игнорируя любые старые данные plausibility)
|
673 |
+
|
674 |
+
Args:
|
675 |
+
db_rules: Словарь с правилами вывода из БД
|
676 |
+
"""
|
677 |
+
for name, rule_data in db_rules.items():
|
678 |
+
rule_data.pop('plausibility', None) # Убеждаемся, что plausibility удалено
|
679 |
+
self.inference_rules[name] = rule_data
|
680 |
+
|
681 |
+
# --- Helper for Input-Only BFS ---
|
682 |
+
def _find_path_using_input_graph(self, input_graph, source_concept, target_concept) -> Dict[str, Any]:
|
683 |
+
"""BFS using only the input graph."""
|
684 |
+
# print(f"DEBUG _find_path_using_input_graph: Start {source_concept} -> {target_concept}") # UNCOMMENTED
|
685 |
+
if source_concept not in input_graph["nodes"]:
|
686 |
+
# --- DEBUG PRINT ---
|
687 |
+
# print(f"DEBUG construct_proof: Source '{source_concept}' not in input graph nodes: {input_graph['nodes']}")
|
688 |
+
# --- END DEBUG PRINT ---
|
689 |
+
return {"status": "Source node not found"}
|
690 |
+
|
691 |
+
visited = {source_concept}
|
692 |
+
queue: List[Tuple[str, List[Tuple[str, str, str, str]]]] = [(source_concept, [])]
|
693 |
+
|
694 |
+
while queue:
|
695 |
+
current_concept, path = queue.pop(0)
|
696 |
+
# print(f"DEBUG _find_path_using_input_graph: Dequeue '{current_concept}'") # UNCOMMENTED
|
697 |
+
|
698 |
+
if current_concept in input_graph["adjacency"]:
|
699 |
+
for next_concept_input, vector_id_input in input_graph["adjacency"][current_concept].get("out", []):
|
700 |
+
# --- DEBUG PRINT ---
|
701 |
+
# print(f"DEBUG construct_proof (Input BFS): Edge {current_concept} -> {next_concept_input} via {vector_id_input}") # UNCOMMENTED
|
702 |
+
# --- END DEBUG PRINT ---
|
703 |
+
if next_concept_input == target_concept:
|
704 |
+
final_path = path + [(current_concept, next_concept_input, vector_id_input, 'input')]
|
705 |
+
# print(f"DEBUG _find_path_using_input_graph: Target reached. Path: {final_path}") # UNCOMMENTED
|
706 |
+
# --- DEBUG PRINT ---
|
707 |
+
# print(f"DEBUG construct_proof (Input BFS): Target '{target_concept}' reached. Path: {final_path}")
|
708 |
+
# --- END DEBUG PRINT ---
|
709 |
+
return {"status": "Path found", "path": final_path, "db_vectors_used": []}
|
710 |
+
|
711 |
+
if next_concept_input not in visited:
|
712 |
+
visited.add(next_concept_input)
|
713 |
+
new_path = path + [(current_concept, next_concept_input, vector_id_input, 'input')]
|
714 |
+
queue.append((next_concept_input, new_path))
|
715 |
+
# print(f"DEBUG _find_path_using_input_graph: Enqueue '{next_concept_input}'") # UNCOMMENTED
|
716 |
+
|
717 |
+
# print(f"DEBUG _find_path_using_input_graph: Path not found.") # UNCOMMENTED
|
718 |
+
# --- DEBUG PRINT ---
|
719 |
+
# print(f"DEBUG construct_proof (Input BFS): Path not found from '{source_concept}' to '{target_concept}'")
|
720 |
+
# --- END DEBUG PRINT ---
|
721 |
+
return {"status": "Path not found (input only)"}
|
722 |
+
|
723 |
+
# --- Helper for Combined BFS ---
|
724 |
+
def _find_path_using_combined_graph(self, input_graph, source_concept, target_concept) -> Dict[str, Any]:
|
725 |
+
"""BFS using input graph AND database lookups."""
|
726 |
+
# print(f"\\nDEBUG _find_path_using_combined_graph: Start {source_concept} -> {target_concept}")
|
727 |
+
# --- DEBUG PRINT ---
|
728 |
+
# print(f"DEBUG construct_proof (Combined BFS): Start {source_concept} -> {target_concept}")
|
729 |
+
# --- END DEBUG PRINT ---
|
730 |
+
if source_concept not in input_graph["nodes"]:
|
731 |
+
if not self.db_conn.get_concept_by_name(source_concept):
|
732 |
+
# --- DEBUG PRINT ---
|
733 |
+
# print(f"DEBUG construct_proof (Combined BFS): Source '{source_concept}' not in input graph or DB.")
|
734 |
+
# --- END DEBUG PRINT ---
|
735 |
+
return {"status": "Source node not found"}
|
736 |
+
|
737 |
+
# visited теперь словарь: {concept_name: origin ('input' или 'db')}
|
738 |
+
visited: Dict[str, str] = {source_concept: 'start'}
|
739 |
+
queue: List[Tuple[str, List[Tuple[str, str, str, str]], Set[int]]] = [(source_concept, [], set())]
|
740 |
+
used_db_vector_ids = set()
|
741 |
+
db_vector_cache = {}
|
742 |
+
|
743 |
+
while queue:
|
744 |
+
current_concept, path, current_used_db_ids = queue.pop(0)
|
745 |
+
# --- DEBUG PRINT ---
|
746 |
+
# print(f"DEBUG construct_proof (Combined BFS): Dequeue '{current_concept}'")
|
747 |
+
# --- END DEBUG PRINT ---
|
748 |
+
|
749 |
+
# --- Шаг 1: Входной граф ---
|
750 |
+
if current_concept in input_graph["adjacency"]:
|
751 |
+
for next_concept_input, vector_id_input in input_graph["adjacency"][current_concept].get("out", []):
|
752 |
+
# --- DEBUG PRINT ---
|
753 |
+
# print(f"DEBUG construct_proof (Combined BFS): Input Edge {current_concept} -> {next_concept_input} via {vector_id_input}")
|
754 |
+
# --- END DEBUG PRINT ---
|
755 |
+
if next_concept_input == target_concept:
|
756 |
+
final_path = path + [(current_concept, next_concept_input, vector_id_input, 'input')]
|
757 |
+
final_db_vectors_list = [ self.db_conn.convert_db_vector_to_system_format(db_vector_cache[vid]) for vid in current_used_db_ids if vid in db_vector_cache ]
|
758 |
+
# --- DEBUG PRINT ---
|
759 |
+
# print(f"DEBUG construct_proof (Combined BFS): Target '{target_concept}' reached via input edge. Path: {final_path}")
|
760 |
+
# --- END DEBUG PRINT ---
|
761 |
+
return {"status": "Path found", "path": final_path, "db_vectors_used": final_db_vectors_list}
|
762 |
+
|
763 |
+
if next_concept_input not in visited:
|
764 |
+
visited[next_concept_input] = 'input' # Помечаем как посещенный через input
|
765 |
+
new_path = path + [(current_concept, next_concept_input, vector_id_input, 'input')]
|
766 |
+
queue.append((next_concept_input, new_path, current_used_db_ids))
|
767 |
+
|
768 |
+
# --- Шаг 2: База Данных ---
|
769 |
+
try:
|
770 |
+
current_concept_info = self.db_conn.get_concept_by_name(current_concept)
|
771 |
+
if not current_concept_info:
|
772 |
+
# --- DEBUG PRINT ---
|
773 |
+
# print(f"DEBUG construct_proof (Combined BFS): Concept '{current_concept}' not found in DB for DB search.")
|
774 |
+
# --- END DEBUG PRINT ---
|
775 |
+
continue
|
776 |
+
current_concept_id = current_concept_info['id']
|
777 |
+
# --- MORE DEBUG ---
|
778 |
+
# print(f"DEBUG _find_path_using_combined_graph: Querying DB vectors for concept '{current_concept}' (ID: {current_concept_id})")
|
779 |
+
# --- END MORE DEBUG ---
|
780 |
+
db_vectors_raw = self.db_conn.get_vectors_for_concept(current_concept_id)
|
781 |
+
# --- MORE DEBUG ---
|
782 |
+
# print(f"DEBUG _find_path_using_combined_graph: Received {len(db_vectors_raw)} vectors from DB for ID {current_concept_id}:")
|
783 |
+
# for dbv in db_vectors_raw:
|
784 |
+
# print(f" - ID: V{dbv.get('id')}, Type: {dbv.get('vector_type')}, Source: {dbv.get('source_name')}, Target: {dbv.get('target_name')}")
|
785 |
+
# --- END MORE DEBUG ---
|
786 |
+
|
787 |
+
for db_vector in db_vectors_raw:
|
788 |
+
if db_vector['source_id'] == current_concept_id:
|
789 |
+
next_concept_db = db_vector['target_name']
|
790 |
+
db_vector_actual_id = db_vector['id']
|
791 |
+
db_vector_system_id = f"V{db_vector_actual_id}"
|
792 |
+
# --- DEBUG PRINT ---
|
793 |
+
# print(f"DEBUG construct_proof (Combined BFS): DB Edge {current_concept} -> {next_concept_db} via {db_vector_system_id}")
|
794 |
+
# --- END DEBUG PRINT ---
|
795 |
+
|
796 |
+
if db_vector_actual_id not in db_vector_cache:
|
797 |
+
db_vector_cache[db_vector_actual_id] = db_vector
|
798 |
+
|
799 |
+
new_used_db_ids = current_used_db_ids.union({db_vector_actual_id})
|
800 |
+
|
801 |
+
if next_concept_db == target_concept:
|
802 |
+
final_path = path + [(current_concept, next_concept_db, db_vector_system_id, 'db')]
|
803 |
+
final_db_vectors_list = [ self.db_conn.convert_db_vector_to_system_format(db_vector_cache[vid]) for vid in new_used_db_ids if vid in db_vector_cache ]
|
804 |
+
# --- DEBUG PRINT ---
|
805 |
+
# print(f"DEBUG construct_proof (Combined BFS): Target '{target_concept}' reached via DB edge. Path: {final_path}")
|
806 |
+
# --- END DEBUG PRINT ---
|
807 |
+
return {"status": "Path found", "path": final_path, "db_vectors_used": final_db_vectors_list}
|
808 |
+
|
809 |
+
# Проверяем, был ли узел посещен и откуда
|
810 |
+
current_visit_status = visited.get(next_concept_db)
|
811 |
+
# Добавляем в очередь, ТОЛЬКО если не посещен через input
|
812 |
+
if current_visit_status != 'input':
|
813 |
+
# Если еще не посещался или посещался через db, обновляем/добавляем
|
814 |
+
if current_visit_status is None or current_visit_status == 'db':
|
815 |
+
visited[next_concept_db] = 'db' # Помечаем как посещенный через db
|
816 |
+
new_path = path + [(current_concept, next_concept_db, db_vector_system_id, 'db')]
|
817 |
+
queue.append((next_concept_db, new_path, new_used_db_ids))
|
818 |
+
|
819 |
+
except Exception as e:
|
820 |
+
print(f"DB Error during path finding in combined search: {e}")
|
821 |
+
return {"status": "DB error", "reason": str(e)}
|
822 |
+
|
823 |
+
return {"status": "Path not found (combined)"}
|
824 |
+
|
825 |
+
# --- Orchestrator Method ---
|
826 |
+
def find_proof_path(self, input_graph, source_concept, target_concept) -> Dict[str, Any]:
|
827 |
+
"""
|
828 |
+
Ищет путь доказательства: сначала только по входным данным, затем с БД.
|
829 |
+
|
830 |
+
Args:
|
831 |
+
input_graph: Граф, построенный ТОЛЬКО из валидных входных векторов.
|
832 |
+
source_concept: Имя исходного концепта.
|
833 |
+
target_concept: Имя целевого концепта.
|
834 |
+
|
835 |
+
Returns:
|
836 |
+
Dict: Результат поиска пути (статус, путь, db_vectors_used).
|
837 |
+
"""
|
838 |
+
# Phase 1: Input vectors only
|
839 |
+
# print("DEBUG find_proof_path: Starting Phase 1 (Input Only)")
|
840 |
+
input_path_info = self._find_path_using_input_graph(input_graph, source_concept, target_concept)
|
841 |
+
|
842 |
+
if input_path_info["status"] == "Path found":
|
843 |
+
# print("DEBUG find_proof_path: Path found in Phase 1. Returning.")
|
844 |
+
return input_path_info
|
845 |
+
|
846 |
+
# Phase 2: Combined input and DB vectors
|
847 |
+
# print("DEBUG find_proof_path: Path not found in Phase 1. Starting Phase 2 (Combined Input+DB)")
|
848 |
+
combined_path_info = self._find_path_using_combined_graph(input_graph, source_concept, target_concept)
|
849 |
+
|
850 |
+
if combined_path_info["status"] == "Path not found (combined)":
|
851 |
+
combined_path_info["status"] = "Path not found"
|
852 |
+
|
853 |
+
# print(f"DEBUG find_proof_path: Phase 2 finished with status: {combined_path_info['status']}")
|
854 |
+
return combined_path_info
|
855 |
+
|
856 |
+
def _apply_chain_rule(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
857 |
+
"""Логика для правила chain_rule. Возвращает (вывод, валидность_шага)."""
|
858 |
+
if len(premises) != 2:
|
859 |
+
return None, False
|
860 |
+
v1, v2 = premises
|
861 |
+
|
862 |
+
# Проверяем соответствие паттерну правила
|
863 |
+
if v1["target"] == v2["source"] and \
|
864 |
+
v1["type"] == "Implication" and \
|
865 |
+
v2["type"] == "Implication": # Вторая посылка должна быть Implication
|
866 |
+
|
867 |
+
# Определяем тип вывода (просто берем из правила)
|
868 |
+
conclusion_type = self.inference_rules["chain_rule"]["conclusion_type"]
|
869 |
+
|
870 |
+
# Формируем вывод
|
871 |
+
conclusion = {
|
872 |
+
"id": f"S{len(self.proof_cache) + 1}", # Генерируем ID для шага
|
873 |
+
"source": v1["source"],
|
874 |
+
"target": v2["target"],
|
875 |
+
"type": conclusion_type,
|
876 |
+
"axis": v1["axis"], # Берем ось из первой посылки (можно уточнить)
|
877 |
+
"justification": f"Derived by chain_rule from {v1['id']} and {v2['id']}",
|
878 |
+
"derived": True # Помечаем, что вектор выведен
|
879 |
+
}
|
880 |
+
return conclusion, True # Шаг валиден
|
881 |
+
|
882 |
+
return None, False # Правило неприменимо
|
883 |
+
|
884 |
+
def _apply_causality_transfer(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
885 |
+
"""Логика для правила causality_transfer. Возвращает (вывод, валидность_шага)."""
|
886 |
+
if len(premises) != 2:
|
887 |
+
return None, False
|
888 |
+
v1, v2 = premises
|
889 |
+
|
890 |
+
# Проверяем соответствие паттерну правила
|
891 |
+
if v1["target"] == v2["source"] and \
|
892 |
+
v1["type"] == "Causality" and \
|
893 |
+
v2["type"] == "Causality": # Вторая посылка должна быть Causality
|
894 |
+
|
895 |
+
conclusion_type = self.inference_rules["causality_transfer"]["conclusion_type"]
|
896 |
+
|
897 |
+
conclusion = {
|
898 |
+
"id": f"S{len(self.proof_cache) + 1}",
|
899 |
+
"source": v1["source"],
|
900 |
+
"target": v2["target"],
|
901 |
+
"type": conclusion_type,
|
902 |
+
"axis": v1["axis"],
|
903 |
+
"justification": f"Derived by causality_transfer from {v1['id']} and {v2['id']}",
|
904 |
+
"derived": True
|
905 |
+
}
|
906 |
+
return conclusion, True
|
907 |
+
|
908 |
+
return None, False
|
909 |
+
|
910 |
+
def _apply_implication_causality_chain(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
911 |
+
"""Логика для правила implication_causality_chain. Возвращает (вывод, валидность_шага)."""
|
912 |
+
if len(premises) != 2:
|
913 |
+
return None, False
|
914 |
+
v1, v2 = premises
|
915 |
+
|
916 |
+
# Проверяем соответствие паттерну
|
917 |
+
if v1["target"] == v2["source"] and \
|
918 |
+
v1["type"] == "Implication" and \
|
919 |
+
v2["type"] == "Causality":
|
920 |
+
|
921 |
+
conclusion_type = self.inference_rules["implication_causality_chain"]["conclusion_type"]
|
922 |
+
|
923 |
+
conclusion = {
|
924 |
+
"id": f"S{len(self.proof_cache) + 1}",
|
925 |
+
"source": v1["source"],
|
926 |
+
"target": v2["target"],
|
927 |
+
"type": conclusion_type,
|
928 |
+
"axis": v1["axis"], # Берем ось из первой посылки
|
929 |
+
"justification": f"Derived by implication_causality_chain from {v1['id']} and {v2['id']}",
|
930 |
+
"derived": True
|
931 |
+
}
|
932 |
+
return conclusion, True
|
933 |
+
|
934 |
+
return None, False
|
935 |
+
|
936 |
+
# --- New Method for PartOf Rule ---
|
937 |
+
def _apply_part_of_transitivity(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
938 |
+
"""Логика для правила part_of_transitivity."""
|
939 |
+
if len(premises) != 2:
|
940 |
+
return None, False
|
941 |
+
v1, v2 = premises
|
942 |
+
|
943 |
+
# Проверяем типы посылок и связь
|
944 |
+
if v1["target"] == v2["source"] and \
|
945 |
+
v1.get("type") == "PartOf" and \
|
946 |
+
v2.get("type") == "PartOf":
|
947 |
+
|
948 |
+
conclusion_type = self.inference_rules["part_of_transitivity"]["conclusion_type"]
|
949 |
+
|
950 |
+
conclusion = {
|
951 |
+
"id": f"S{len(self.proof_cache) + 1}",
|
952 |
+
"source": v1["source"],
|
953 |
+
"target": v2["target"],
|
954 |
+
"type": conclusion_type,
|
955 |
+
"axis": v1.get("axis", "partonomy"), # Use axis from v1 or default
|
956 |
+
"justification": f"Derived by part_of_transitivity from {v1.get('id', '?')} and {v2.get('id', '?')}",
|
957 |
+
"derived": True
|
958 |
+
}
|
959 |
+
return conclusion, True
|
960 |
+
|
961 |
+
return None, False
|
962 |
+
|
963 |
+
# --- Новая логика для правила Action -> Causality ---
|
964 |
+
def _apply_action_causality_chain(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
965 |
+
"""Логика для правила action_causality_chain. Возвращает (вывод, валидность_шага)."""
|
966 |
+
if len(premises) != 2:
|
967 |
+
return None, False
|
968 |
+
v1, v2 = premises
|
969 |
+
|
970 |
+
# Проверяем соответствие паттерну правила: A->B (Action), B->C (Causality)
|
971 |
+
if v1["target"] == v2["source"] and \
|
972 |
+
v1.get("type") == "Action" and \
|
973 |
+
v2.get("type") == "Causality":
|
974 |
+
|
975 |
+
conclusion_type = self.inference_rules["action_causality_chain"]["conclusion_type"]
|
976 |
+
|
977 |
+
conclusion = {
|
978 |
+
"id": f"S{len(self.proof_cache) + 1}",
|
979 |
+
"source": v1["source"],
|
980 |
+
"target": v2["target"],
|
981 |
+
"type": conclusion_type,
|
982 |
+
"axis": v1.get("axis", v2.get("axis")), # Ось можно взять из Action или Causality
|
983 |
+
"justification": f"Derived by action_causality_chain from {v1.get('id', '?')} and {v2.get('id', '?')}",
|
984 |
+
"derived": True
|
985 |
+
}
|
986 |
+
return conclusion, True # Шаг считаем валидным, если правило применилось
|
987 |
+
|
988 |
+
return None, False
|
989 |
+
|
990 |
+
# --- Логика для правила Action -> IsA ---
|
991 |
+
def _apply_action_isa_generalization(self, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
992 |
+
"""Логика для правила action_isa_generalization."""
|
993 |
+
if len(premises) != 2:
|
994 |
+
return None, False
|
995 |
+
v_action, v_isa = premises # Ожидаем Action, затем IsA
|
996 |
+
|
997 |
+
# Проверяем типы и связь: A -> B_inst (Action), B_inst IsA B_type
|
998 |
+
if v_action.get("type") == "Action" and \
|
999 |
+
v_isa.get("type") == "IsA" and \
|
1000 |
+
v_action.get("target") == v_isa.get("source"): # Target(Action) == Source(IsA)
|
1001 |
+
|
1002 |
+
conclusion_type = self.inference_rules["action_isa_generalization"]["conclusion_type"]
|
1003 |
+
source_a = v_action.get("source")
|
1004 |
+
target_b_type = v_isa.get("target") # Берем тип из IsA
|
1005 |
+
|
1006 |
+
conclusion = {
|
1007 |
+
"id": f"S{len(self.proof_cache) + 1}",
|
1008 |
+
"source": source_a,
|
1009 |
+
"target": target_b_type,
|
1010 |
+
"type": conclusion_type, # Тип сохраняется как Action
|
1011 |
+
"axis": v_action.get("axis"), # Ось берем из Action
|
1012 |
+
"justification": f"Derived by action_isa_generalization from {v_action.get('id', '?')} and {v_isa.get('id', '?')}",
|
1013 |
+
"derived": True
|
1014 |
+
}
|
1015 |
+
# print(f"DEBUG _apply_action_isa_generalization: Applied. Conclusion: {conclusion}") # Временный дебаг
|
1016 |
+
return conclusion, True
|
1017 |
+
|
1018 |
+
# print(f"DEBUG _apply_action_isa_generalization: Rule not applicable. v_action type: {v_action.get('type')}, v_isa type: {v_isa.get('type')}, link: {v_action.get('target')} == {v_isa.get('source')}") # Временный дебаг
|
1019 |
+
return None, False
|
1020 |
+
|
1021 |
+
def apply_inference_rule(self, rule_name: str, premises: List[Dict]) -> Tuple[Optional[Dict], bool]:
|
1022 |
+
"""Применяет правило вывода, возвращая (вывод, валидность_шага)."""
|
1023 |
+
rule_functions = {
|
1024 |
+
"chain_rule": self._apply_chain_rule,
|
1025 |
+
"causality_transfer": self._apply_causality_transfer,
|
1026 |
+
"implication_causality_chain": self._apply_implication_causality_chain,
|
1027 |
+
"part_of_transitivity": self._apply_part_of_transitivity,
|
1028 |
+
"action_causality_chain": self._apply_action_causality_chain, # Добавляем новое правило
|
1029 |
+
"action_isa_generalization": self._apply_action_isa_generalization # Добавляем еще одно новое правило
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
conclusion, is_step_valid = None, False
|
1033 |
+
if rule_name in rule_functions:
|
1034 |
+
# Предполагаем, что в premises УЖЕ только валидные векторы
|
1035 |
+
conclusion, is_step_valid = rule_functions[rule_name](premises)
|
1036 |
+
|
1037 |
+
# --- DEBUG PRINT ---
|
1038 |
+
# print(f"DEBUG apply_inference_rule: Rule='{rule_name}', Premises={[p.get('id', '?') for p in premises]}, Conclusion='{conclusion.get('id', None) if conclusion else None}', StepValid={is_step_valid}")
|
1039 |
+
# --- END DEBUG PRINT ---
|
1040 |
+
|
1041 |
+
if conclusion:
|
1042 |
+
# Кэшируем только структуру успешного вывода
|
1043 |
+
self.proof_cache[conclusion["id"]] = conclusion
|
1044 |
+
|
1045 |
+
return conclusion, is_step_valid
|
1046 |
+
|
1047 |
+
def construct_proof(self, vectors_for_proof: List[Dict], source_concept: str, target_concept: str) -> Dict:
|
1048 |
+
"""Построение доказательства от source_concept к target_concept.
|
1049 |
+
Использует граф из предоставленных векторов (входных + временных IsA)
|
1050 |
+
и динамически подгружает векторы из БД.
|
1051 |
+
"""
|
1052 |
+
# --- DEBUG PRINT ---
|
1053 |
+
# print(f"\\nDEBUG construct_proof: Start. Query: {source_concept} -> {target_concept}")
|
1054 |
+
# print(f"DEBUG construct_proof: Input vectors count: {len(vectors_for_proof)}")
|
1055 |
+
# --- END DEBUG PRINT ---
|
1056 |
+
|
1057 |
+
# Убираем instance_definitions из параметров
|
1058 |
+
valid_vectors_input = vectors_for_proof # Переименуем для консистентности с кодом ниже
|
1059 |
+
|
1060 |
+
if not valid_vectors_input and not self.db_conn.get_concept_by_name(source_concept):
|
1061 |
+
# --- DEBUG PRINT ---
|
1062 |
+
# print("DEBUG construct_proof: Failed - No input vectors and source concept not found in DB.")
|
1063 |
+
# --- END DEBUG PRINT ---
|
1064 |
+
return {"status": "Failed", "reason": "No input vectors and source concept not found in DB", "is_valid": False}
|
1065 |
+
|
1066 |
+
# --- Теперь строим граф и vector_map из ВСЕХ предоставленных векторов ---
|
1067 |
+
input_graph = self._build_proof_graph(valid_vectors_input)
|
1068 |
+
vector_map = {v["id"]: v for v in valid_vectors_input}
|
1069 |
+
# --- DEBUG PRINT ---
|
1070 |
+
# print(f"DEBUG construct_proof: Built input graph with {len(input_graph['nodes'])} nodes and {len(input_graph['edges'])} edges.")
|
1071 |
+
# print(f"DEBUG construct_proof: Vector map keys: {list(vector_map.keys())}")
|
1072 |
+
# --- MORE DEBUG ---
|
1073 |
+
import pprint
|
1074 |
+
# print(f"DEBUG construct_proof: Input Graph Adjacency:\n{pprint.pformat(input_graph.get('adjacency', {}))}")
|
1075 |
+
# --- END MORE DEBUG ---
|
1076 |
+
# --- END DEBUG PRINT ---
|
1077 |
+
# ---------------------------------------------------------------------
|
1078 |
+
|
1079 |
+
# Ищем путь: сначала только входные, потом с БД
|
1080 |
+
path_info = self.find_proof_path(input_graph, source_concept, target_concept)
|
1081 |
+
# --- DEBUG PRINT ---
|
1082 |
+
# print(f"DEBUG construct_proof: Path finding result: Status='{path_info.get('status')}', Path length={len(path_info.get('path', []))}")
|
1083 |
+
# --- END DEBUG PRINT ---
|
1084 |
+
|
1085 |
+
if path_info.get("status") != "Path found":
|
1086 |
+
# --- DEBUG PRINT ---
|
1087 |
+
# print(f"DEBUG construct_proof: Failed - Path not found. Reason: {path_info.get('status', 'Unknown')}")
|
1088 |
+
# --- END DEBUG PRINT ---
|
1089 |
+
return {"status": "Failed", "reason": f"Path not found: {path_info.get('status', 'Unknown')}", "is_valid": False}
|
1090 |
+
|
1091 |
+
path = path_info["path"]
|
1092 |
+
db_vectors_used = path_info.get("db_vectors_used", [])
|
1093 |
+
|
1094 |
+
# --- MORE DEBUG ---
|
1095 |
+
# print(f"DEBUG construct_proof: Found Path: {path}")
|
1096 |
+
# print(f"DEBUG construct_proof: DB Vectors Used: {[v.get('id') for v in db_vectors_used]}")
|
1097 |
+
# --- END MORE DEBUG ---
|
1098 |
+
|
1099 |
+
# Добавляем векторы из БД в vector_map
|
1100 |
+
for db_vec in db_vectors_used:
|
1101 |
+
if db_vec["id"] not in vector_map:
|
1102 |
+
vector_map[db_vec["id"]] = db_vec
|
1103 |
+
|
1104 |
+
# --- MORE DEBUG ---
|
1105 |
+
# print(f"DEBUG construct_proof: Vector Map Contents:")
|
1106 |
+
# for vid, vdata in vector_map.items():
|
1107 |
+
# print(f" - {vid}: Type={vdata.get('type')}, Source={vdata.get('source')}, Target={vdata.get('target')}")
|
1108 |
+
# --- END MORE DEBUG ---
|
1109 |
+
|
1110 |
+
# --- Проверка на прямой путь ---
|
1111 |
+
if len(path) == 1:
|
1112 |
+
direct_vector_id = path[0][2]
|
1113 |
+
direct_vector = vector_map.get(direct_vector_id)
|
1114 |
+
# --- DEBUG PRINT ---
|
1115 |
+
# print(f"DEBUG construct_proof: Path length is 1. Direct vector ID: {direct_vector_id}")
|
1116 |
+
# --- END DEBUG PRINT ---
|
1117 |
+
if direct_vector:
|
1118 |
+
# --- DEBUG PRINT ---
|
1119 |
+
# print(f"DEBUG construct_proof: Success - Direct proof found using vector {direct_vector_id}.")
|
1120 |
+
# --- END DEBUG PRINT ---
|
1121 |
+
return {
|
1122 |
+
"status": "Success",
|
1123 |
+
"source": source_concept,
|
1124 |
+
"target": target_concept,
|
1125 |
+
"steps": [], # Нет шагов для прямого доказательства
|
1126 |
+
"rule": "direct", # Указываем, что это прямой путь
|
1127 |
+
"direct_vector_id": direct_vector_id,
|
1128 |
+
"is_valid": True, # Прямой путь считается валидным
|
1129 |
+
"final_conclusion_type": direct_vector.get("type"),
|
1130 |
+
"metadata": {} # Пока без метаданных о цикле здесь
|
1131 |
+
}
|
1132 |
+
else:
|
1133 |
+
# --- DEBUG PRINT ---
|
1134 |
+
# print(f"DEBUG construct_proof: Failed - Direct vector {direct_vector_id} not found in map.")
|
1135 |
+
# --- END DEBUG PRINT ---
|
1136 |
+
return {"status": "Failed", "reason": f"Direct vector {direct_vector_id} not found", "is_valid": False}
|
1137 |
+
|
1138 |
+
# --- Построение доказательства по шагам ---
|
1139 |
+
steps = []
|
1140 |
+
current_premise = None # Будет содержать ВЕКТОР (словарь)
|
1141 |
+
overall_validity = True # Валидность всего доказательства
|
1142 |
+
cycle_warning = None
|
1143 |
+
visited_nodes_in_proof = {source_concept} # Для обнаружения циклов во время ПОСТРОЕНИЯ
|
1144 |
+
|
1145 |
+
# --- DEBUG PRINT ---
|
1146 |
+
# print("DEBUG construct_proof: Starting step-by-step construction...")
|
1147 |
+
# --- END DEBUG PRINT ---
|
1148 |
+
for i, (seg_source, seg_target, vector_id, origin) in enumerate(path):
|
1149 |
+
# --- DEBUG PRINT ---
|
1150 |
+
# print(f"DEBUG construct_proof: Processing segment {i+1}/{len(path)}: {seg_source} -> {seg_target} via {vector_id} (from {origin})")
|
1151 |
+
# --- END DEBUG PRINT ---
|
1152 |
+
|
1153 |
+
# Защита от отсутствия вектора в карте (на всякий случай)
|
1154 |
+
premise2 = vector_map.get(vector_id)
|
1155 |
+
if not premise2:
|
1156 |
+
# --- DEBUG PRINT ---
|
1157 |
+
# print(f"DEBUG construct_proof: Failed - Vector {vector_id} for segment {i+1} not found in map.")
|
1158 |
+
# --- END DEBUG PRINT ---
|
1159 |
+
overall_validity = False
|
1160 |
+
return {"status": "Failed", "reason": f"Vector {vector_id} not found during step construction", "is_valid": False}
|
1161 |
+
|
1162 |
+
premise2_source = origin # 'input' or 'db'
|
1163 |
+
|
1164 |
+
if current_premise is None:
|
1165 |
+
current_premise = premise2
|
1166 |
+
source1 = premise2_source # Источник первой посылки - сам этот вектор
|
1167 |
+
# --- DEBUG PRINT ---
|
1168 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: Initial premise set to {current_premise.get('id')}")
|
1169 |
+
# --- MORE DEBUG ---
|
1170 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: Initial premise set to: ID={current_premise.get('id', 'NO_ID')}, Type={current_premise.get('type', 'NO_TYPE')}, Source={current_premise.get('source')}, Target={current_premise.get('target')}")
|
1171 |
+
# --- END MORE DEBUG ---
|
1172 |
+
# --- END DEBUG PRINT ---
|
1173 |
+
else:
|
1174 |
+
premises = [current_premise, premise2]
|
1175 |
+
premise_ids = [p.get("id", "?") for p in premises]
|
1176 |
+
source1 = "derived" if current_premise.get("derived") else current_premise.get("origin", "input") # Откуда первая посылка?
|
1177 |
+
|
1178 |
+
conclusion = None
|
1179 |
+
is_step_valid = False
|
1180 |
+
rule_name = None
|
1181 |
+
|
1182 |
+
# --- DEBUG PRINT ---
|
1183 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: Trying to apply rules. Premise1='{premises[0].get('id')}' ({source1}), Premise2='{premises[1].get('id')}' ({premise2_source})")
|
1184 |
+
# --- MORE DEBUG ---
|
1185 |
+
prem1_id = current_premise.get('id', 'NO_ID')
|
1186 |
+
prem1_type = current_premise.get('type', 'NO_TYPE')
|
1187 |
+
prem2_id = premise2.get('id', 'NO_ID')
|
1188 |
+
prem2_type = premise2.get('type', 'NO_TYPE')
|
1189 |
+
# print(f"DEBUG construct_proof: Applying rules. Premise1: ID={prem1_id}, Type={prem1_type} | Premise2: ID={prem2_id}, Type={prem2_type}")
|
1190 |
+
# --- MORE DEBUG ---
|
1191 |
+
# print(f" Premise1 Details: Source={current_premise.get('source')}, Target={current_premise.get('target')}")
|
1192 |
+
# print(f" Premise2 Details: Source={premise2.get('source')}, Target={premise2.get('target')}")
|
1193 |
+
# --- END MORE DEBUG ---
|
1194 |
+
# --- END DEBUG PRINT ---
|
1195 |
+
|
1196 |
+
# Применяем подходящее правило
|
1197 |
+
for key in self.inference_rules.keys():
|
1198 |
+
temp_conclusion, temp_valid = self.apply_inference_rule(key, premises)
|
1199 |
+
if temp_conclusion:
|
1200 |
+
conclusion = temp_conclusion
|
1201 |
+
is_step_valid = temp_valid
|
1202 |
+
rule_name = key
|
1203 |
+
# --- DEBUG PRINT ---
|
1204 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: Applied rule '{rule_name}'. Conclusion='{conclusion.get('id')}', StepValid={is_step_valid}")
|
1205 |
+
# --- END DEBUG PRINT ---
|
1206 |
+
break # Нашли подходящее правило
|
1207 |
+
|
1208 |
+
if conclusion:
|
1209 |
+
conclusion["origin"] = "derived" # Помечаем, что вывод получен
|
1210 |
+
step_detail = {
|
1211 |
+
"id": conclusion["id"],
|
1212 |
+
"rule": rule_name,
|
1213 |
+
"premises": premise_ids,
|
1214 |
+
"conclusion": conclusion,
|
1215 |
+
"is_valid": is_step_valid,
|
1216 |
+
"premise1_source": source1,
|
1217 |
+
"premise2_source": premise2_source, # 'input' or 'db'
|
1218 |
+
# --- DEBUG PRINT ---
|
1219 |
+
# "debug_premise1": current_premise,
|
1220 |
+
# "debug_premise2": premise2
|
1221 |
+
# --- END DEBUG PRINT ---
|
1222 |
+
}
|
1223 |
+
steps.append(step_detail)
|
1224 |
+
current_premise = conclusion # Результат этого шага становится первой посылкой для следующего
|
1225 |
+
|
1226 |
+
if not is_step_valid:
|
1227 |
+
overall_validity = False
|
1228 |
+
# --- DEBUG PRINT ---
|
1229 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: Step marked invalid, setting overall validity to False.")
|
1230 |
+
# --- END DEBUG PRINT ---
|
1231 |
+
# Можно прервать, если один шаг невалиден? Или достроить? Пока достраиваем.
|
1232 |
+
|
1233 |
+
# Проверка на цикл в построении
|
1234 |
+
target_node = conclusion.get("target")
|
1235 |
+
if target_node in visited_nodes_in_proof:
|
1236 |
+
cycle_warning = f"Cycle detected during proof construction: revisiting node '{target_node}'"
|
1237 |
+
# --- DEBUG PRINT ---
|
1238 |
+
# print(f"DEBUG construct_proof: Segment {i+1}: {cycle_warning}")
|
1239 |
+
# --- END DEBUG PRINT ---
|
1240 |
+
else:
|
1241 |
+
visited_nodes_in_proof.add(target_node)
|
1242 |
+
|
1243 |
+
else:
|
1244 |
+
# Не смогли применить правило - доказательство невалидно
|
1245 |
+
overall_validity = False
|
1246 |
+
# --- DEBUG PRINT ---
|
1247 |
+
# print(f"DEBUG construct_proof: Failed - No applicable rule found for premises {premise_ids} in segment {i+1}.")
|
1248 |
+
# --- END DEBUG PRINT ---
|
1249 |
+
return {"status": "Failed", "reason": f"No inference rule applicable for premises {premise_ids}", "is_valid": False}
|
1250 |
+
|
1251 |
+
# --- Финальное формирование результата ---
|
1252 |
+
final_conclusion = current_premise # Последний вывод - это и есть результат
|
1253 |
+
|
1254 |
+
# Проверка, что финальный вывод соответствует запросу
|
1255 |
+
if not final_conclusion or \
|
1256 |
+
final_conclusion.get("source") != source_concept or \
|
1257 |
+
final_conclusion.get("target") != target_concept:
|
1258 |
+
# --- DEBUG PRINT ---
|
1259 |
+
final_src = final_conclusion.get('source') if final_conclusion else 'None'
|
1260 |
+
final_tgt = final_conclusion.get('target') if final_conclusion else 'None'
|
1261 |
+
# print(f"DEBUG construct_proof: Failed - Final conclusion mismatch. Expected={source_concept}->{target_concept}, Got={final_src}->{final_tgt}")
|
1262 |
+
# --- END DEBUG PRINT ---
|
1263 |
+
overall_validity = False
|
1264 |
+
# Статус все еще может быть Success, но is_valid = False? Или статус Failed?
|
1265 |
+
# Сделаем статус Failed, если вывод не совпал.
|
1266 |
+
return {
|
1267 |
+
"status": "Failed",
|
1268 |
+
"reason": f"Final conclusion mismatch: expected {source_concept}->{target_concept}, got {final_conclusion.get('source') if final_conclusion else 'N/A'}->{final_conclusion.get('target') if final_conclusion else 'N/A'}",
|
1269 |
+
"is_valid": False,
|
1270 |
+
"source": source_concept,
|
1271 |
+
"target": target_concept,
|
1272 |
+
"steps": steps,
|
1273 |
+
"metadata": {"cycle_warning": cycle_warning} if cycle_warning else {}
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
final_result = {
|
1277 |
+
"status": "Success", # Если дошли сюда, структура доказательства построена
|
1278 |
+
"source": source_concept,
|
1279 |
+
"target": target_concept,
|
1280 |
+
"steps": steps,
|
1281 |
+
"is_valid": overall_validity, # Валидность зависит от валидности всех шагов
|
1282 |
+
"final_conclusion_type": final_conclusion.get("type"),
|
1283 |
+
"metadata": {"cycle_warning": cycle_warning} if cycle_warning else {}
|
1284 |
+
}
|
1285 |
+
# --- DEBUG PRINT ---
|
1286 |
+
# print(f"DEBUG construct_proof: Finished successfully.")
|
1287 |
+
# print(f"DEBUG construct_proof: Final Result Status: {final_result['status']}")
|
1288 |
+
# print(f"DEBUG construct_proof: Final Result IsValid: {final_result['is_valid']}")
|
1289 |
+
# print(f"DEBUG construct_proof: Final Result Steps Count: {len(final_result['steps'])}")
|
1290 |
+
# if final_result['steps']:
|
1291 |
+
# for idx, step in enumerate(final_result['steps']):
|
1292 |
+
# print(f" Step {idx+1} ({step['id']}): Rule='{step['rule']}', Premises={step['premises']}, Valid={step['is_valid']}, Conc={step['conclusion']['source']}->{step['conclusion']['target']}")
|
1293 |
+
# print(f"DEBUG construct_proof: Final Conclusion Type: {final_result['final_conclusion_type']}")
|
1294 |
+
# print(f"DEBUG construct_proof: Metadata: {final_result['metadata']}")
|
1295 |
+
# --- END DEBUG PRINT ---
|
1296 |
+
return final_result
|
1297 |
+
|
1298 |
+
|
1299 |
+
def _build_proof_graph(self, vectors):
|
1300 |
+
"""Вспомогательная функция для построения графа из векторов"""
|
1301 |
+
graph = {"nodes": set(), "edges": [], "adjacency": {}}
|
1302 |
+
for v in vectors:
|
1303 |
+
source, target, v_id = v["source"], v["target"], v["id"]
|
1304 |
+
graph["nodes"].add(source)
|
1305 |
+
graph["nodes"].add(target)
|
1306 |
+
graph["edges"].append((source, target, v_id))
|
1307 |
+
|
1308 |
+
# Обновление списка смежности
|
1309 |
+
if source not in graph["adjacency"]:
|
1310 |
+
graph["adjacency"][source] = {"out": [], "in": []}
|
1311 |
+
if target not in graph["adjacency"]:
|
1312 |
+
graph["adjacency"][target] = {"out": [], "in": []}
|
1313 |
+
|
1314 |
+
graph["adjacency"][source]["out"].append((target, v_id))
|
1315 |
+
graph["adjacency"][target]["in"].append((source, v_id))
|
1316 |
+
|
1317 |
+
return graph
|
1318 |
+
|
1319 |
+
if __name__ == "__main__":
|
1320 |
+
print(f"SFOSR Integrated System v{SFOSR_CONFIG['version']}")
|
1321 |
+
print("Готов к анализу смысловых структур.")
|
1322 |
+
|
1323 |
+
# Пример входных данных (используем концепты из БД для демонстрации)
|
1324 |
+
example = {
|
1325 |
+
"text": "Emergence leads to multi-level space, which causes cross-level causation, finally leading to regulatory flow.",
|
1326 |
+
"vectors": [
|
1327 |
+
{
|
1328 |
+
"id": "V_EC_MLS",
|
1329 |
+
"source": "emergent_complexity",
|
1330 |
+
"target": "multi_level_space",
|
1331 |
+
"type": "Implication",
|
1332 |
+
"axis": "structure <-> hierarchy",
|
1333 |
+
"justification": "Emergence creates levels"
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"id": "V_MLS_CLC",
|
1337 |
+
"source": "multi_level_space",
|
1338 |
+
"target": "cross_level_causation",
|
1339 |
+
"type": "Causality", # Тип Causality
|
1340 |
+
"axis": "level <-> interaction",
|
1341 |
+
"justification": "Levels imply cross-level effects"
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"id": "V_CLC_RF",
|
1345 |
+
"source": "cross_level_causation",
|
1346 |
+
"target": "regulatory_flow",
|
1347 |
+
"type": "Causality", # Тип Causality
|
1348 |
+
"axis": "cause <-> regulation",
|
1349 |
+
"justification": "Cross-level effects drive regulation"
|
1350 |
+
}
|
1351 |
+
],
|
1352 |
+
"proof_query": {
|
1353 |
+
"source": "multi_level_space",
|
1354 |
+
"target": "regulatory_flow"
|
1355 |
+
}
|
1356 |
+
}
|
1357 |
+
|
1358 |
+
# Создаем и тестируем интегрированную систему
|
1359 |
+
system = SFOSRSystem()
|
1360 |
+
result = system.process(example)
|
1361 |
+
|
1362 |
+
# Выводим результаты (обновлено для бинарной валидности)
|
1363 |
+
print("\n--- Результаты Обработки ---")
|
1364 |
+
print(f"Статус: {result['status']}")
|
1365 |
+
if result['status'] == 'Success':
|
1366 |
+
print(f"Компилируемость: {result['analysis']['is_compilable']}")
|
1367 |
+
print("\n--- Верификация ---")
|
1368 |
+
print(f"Всего обработано векторов: {result['verification']['total_vectors_processed']}")
|
1369 |
+
print(f"Валидных векторов: {result['verification']['valid_count']}")
|
1370 |
+
print(f"Уровень соответствия: {result['verification']['compliance_rate'] * 100:.1f}%")
|
1371 |
+
print("Данные по Векторам:")
|
1372 |
+
for v_id, data in result['verification']['vectors_data'].items():
|
1373 |
+
valid_str = "Валиден" if data['is_valid'] else "Не валиден"
|
1374 |
+
issues_str = ', '.join(data['issues']) if data['issues'] else 'Нет'
|
1375 |
+
print(f" - {v_id}: Статус={valid_str}, Проблемы: {issues_str}")
|
1376 |
+
|
1377 |
+
if "proof" in result:
|
1378 |
+
print("\n--- Доказательство ---")
|
1379 |
+
proof = result['proof']
|
1380 |
+
print(f"Статус: {proof['status']}")
|
1381 |
+
valid_proof_str = "Валидно" if proof.get('is_valid', False) else "Не валидно"
|
1382 |
+
print(f"Общая Валидность: {valid_proof_str}")
|
1383 |
+
if proof['status'] == 'Success':
|
1384 |
+
print(f"Доказательство: {proof['source']} → {proof['target']}")
|
1385 |
+
print(f"Тип финального вывода: {proof.get('final_conclusion_type', 'N/A')}")
|
1386 |
+
print("Шаги доказательства:")
|
1387 |
+
if proof['steps']:
|
1388 |
+
for step in proof['steps']:
|
1389 |
+
step_valid_str = "Валиден" if step['is_valid'] else "Не валиден"
|
1390 |
+
print(f" - {step['id']}: Правило={step['rule']}, Посылки=({', '.join(step['premises'])}) | Статус={step_valid_str}")
|
1391 |
+
if step['conclusion']:
|
1392 |
+
print(f" Вывод: {step['conclusion']['source']} → {step['conclusion']['target']} ({step['conclusion']['type']})")
|
1393 |
+
else:
|
1394 |
+
print(f" Вывод: None (Ошибка: {step.get('reason', '')})")
|
1395 |
+
else:
|
1396 |
+
print(" (Нет шагов)")
|
1397 |
+
elif 'reason' in proof:
|
1398 |
+
print(f"Причина неудачи: {proof['reason']}")
|
1399 |
+
|
1400 |
+
elif 'details' in result and 'validation_issues' in result['details']:
|
1401 |
+
print("\n--- Ошибки Анализа ---")
|
1402 |
+
for issue in result['details']['validation_issues']:
|
1403 |
+
print(f" - {issue}")
|