FlexChunk / app.py
DanielSwift's picture
FlexChunk Demo: Complete interactive application for sparse matrix-vector multiplication benchmarking
a7585d3
raw
history blame
14.7 kB
import gradio as gr
import numpy as np
import scipy.sparse as sparse
import time
import os
import shutil
import math
import sys
from pathlib import Path
# Assuming flex_chunk.py and matrix_multiply.py are in the same directory
from flex_chunk import FlexChunk, save_chunk, load_chunk
from matrix_multiply import prepare_chunks, load_chunks, matrix_vector_multiply
# --- Matrix Generation (copied from test_vs_scipy.py) ---
def generate_sparse_matrix(size, density, challenging=False):
"""
Generate a sparse test matrix with optional challenging patterns.
Args:
size: Matrix size (n x n)
density: Target density
challenging: Whether to include challenging patterns and extreme values
Returns:
A scipy.sparse.csr_matrix
"""
# Calculate number of non-zeros
nnz = int(size * size * density)
if nnz == 0: # Ensure at least one non-zero element if density is very low
nnz = 1
if not challenging:
# Simple random matrix
rows = np.random.randint(0, size, nnz)
cols = np.random.randint(0, size, nnz)
data = np.random.rand(nnz)
# Ensure the matrix actually has the specified size if nnz is small
if nnz < size:
# Add diagonal elements to ensure size
diag_indices = np.arange(min(nnz, size))
rows = np.concatenate([rows, diag_indices])
cols = np.concatenate([cols, diag_indices])
data = np.concatenate([data, np.ones(len(diag_indices))]) # Use 1 for diagonal
matrix = sparse.csr_matrix((data, (rows, cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Challenging matrix with specific patterns ---
# Base random matrix (80% of non-zeros)
base_nnz = int(nnz * 0.8)
rows = np.random.randint(0, size, base_nnz)
cols = np.random.randint(0, size, base_nnz)
data = np.random.rand(base_nnz)
# Add diagonal elements (10% of non-zeros)
diag_nnz = int(nnz * 0.1)
diag_indices = np.random.choice(size, diag_nnz, replace=False)
# Add extreme values (10% of non-zeros)
extreme_nnz = max(0, nnz - base_nnz - diag_nnz) # Ensure non-negative
extreme_rows = np.random.randint(0, size, extreme_nnz)
extreme_cols = np.random.randint(0, size, extreme_nnz)
# Mix of very large and very small values
extreme_data = np.concatenate([
np.random.uniform(1e6, 1e9, extreme_nnz // 2),
np.random.uniform(1e-9, 1e-6, extreme_nnz - extreme_nnz // 2)
]) if extreme_nnz > 0 else np.array([])
if extreme_nnz > 0:
np.random.shuffle(extreme_data)
# Combine all components
all_rows = np.concatenate([rows, diag_indices, extreme_rows])
all_cols = np.concatenate([cols, diag_indices, extreme_cols])
all_data = np.concatenate([data, np.random.rand(diag_nnz), extreme_data])
matrix = sparse.csr_matrix((all_data, (all_rows, all_cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Benchmark Function (Placeholder) ---
def run_benchmark(size, density, num_chunks, challenging, flex_only=False, progress=gr.Progress()):
# This function will contain the main logic from test_vs_scipy.py
# Adapted for Gradio inputs and outputs
progress(0, desc="Starting Benchmark...")
time.sleep(1) # Placeholder
# 1. Setup storage
storage_dir = Path("./flex_chunk_temp_space")
if storage_dir.exists():
shutil.rmtree(storage_dir)
storage_dir.mkdir(exist_ok=True)
progress(0.1, desc="Generating Matrix...")
# 2. Generate matrix and vector
matrix = generate_sparse_matrix(size, density, challenging)
vector = np.random.rand(size)
actual_nnz = matrix.nnz
actual_density = actual_nnz / (size * size) if size > 0 else 0
matrix_info = f"Matrix: {size}x{size}, Target Density: {density:.6f}, Actual Density: {actual_density:.6f}, NNZ: {actual_nnz}"
print(matrix_info) # For debugging in Hugging Face console
# --- FlexChunk Run ---
progress(0.2, desc="Preparing FlexChunks...")
prepare_start = time.time()
prepare_chunks(matrix, num_chunks, str(storage_dir), verbose=False)
prepare_time = time.time() - prepare_start
progress(0.4, desc="Loading FlexChunks...")
load_start = time.time()
chunks = load_chunks(str(storage_dir), verbose=False)
load_time = time.time() - load_start
progress(0.6, desc="Running FlexChunk SpMV...")
flex_compute_start = time.time()
flex_result = matrix_vector_multiply(chunks, vector, verbose=False)
flex_compute_time = time.time() - flex_compute_start
flex_total_time = load_time + flex_compute_time
# Estimate FlexChunk memory usage
max_chunk_size = max(chunk.data.nbytes + chunk.col_indices.nbytes + chunk.row_offsets.nbytes for chunk in chunks)
flex_operational_memory = max_chunk_size + vector.nbytes + (size * 8) # Chunk + vector + result vector
flex_memory_mb = flex_operational_memory / (1024*1024)
# --- SciPy Run (Optional) ---
if not flex_only:
progress(0.7, desc="Saving SciPy data...")
scipy_temp_dir = storage_dir / "scipy_temp"
scipy_temp_dir.mkdir(exist_ok=True)
matrix_file = scipy_temp_dir / "matrix.npz"
vector_file = scipy_temp_dir / "vector.npy"
scipy_save_start = time.time()
sparse.save_npz(matrix_file, matrix)
np.save(vector_file, vector)
scipy_save_time = time.time() - scipy_save_start
progress(0.8, desc="Loading SciPy data...")
scipy_load_start = time.time()
loaded_matrix = sparse.load_npz(matrix_file)
loaded_vector = np.load(vector_file)
scipy_load_time = time.time() - scipy_load_start
progress(0.9, desc="Running SciPy SpMV...")
scipy_compute_start = time.time()
scipy_result = loaded_matrix @ loaded_vector
scipy_compute_time = time.time() - scipy_compute_start
scipy_total_time = scipy_load_time + scipy_compute_time
# Estimate SciPy memory usage
scipy_memory = loaded_matrix.data.nbytes + loaded_matrix.indices.nbytes + loaded_matrix.indptr.nbytes + loaded_vector.nbytes
scipy_memory_mb = scipy_memory / (1024*1024)
# --- Comparison ---
progress(0.95, desc="Comparing results...")
diff = np.abs(scipy_result - flex_result)
max_diff = np.max(diff) if len(diff) > 0 else 0
mean_diff = np.mean(diff) if len(diff) > 0 else 0
is_close = np.allclose(scipy_result, flex_result, atol=1e-9) # Increased tolerance slightly
comparison_result = f"✅ Results Match! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})" if is_close else f"❌ Results Differ! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})"
# --- Cleanup ---
shutil.rmtree(storage_dir)
progress(1.0, desc="Benchmark Complete")
# --- Format Output ---
if flex_only:
results_summary = f"""
## Matrix Information
{matrix_info}
## FlexChunk Performance
| Stage | Time |
|-------|------|
| Prepare Chunks | {prepare_time:.4f}s |
| Load Chunks | {load_time:.4f}s |
| Compute | {flex_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** |
## Memory Usage
| Metric | Value |
|--------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB |
| Chunks | {num_chunks} |
"""
else:
results_summary = f"""
## Matrix Information
{matrix_info}
## Performance Comparison
| Stage | FlexChunk | SciPy (Out-of-Core) |
|-------|-----------|---------------------|
| Data Preparation | {prepare_time:.4f}s | {scipy_save_time:.4f}s |
| Load Time | {load_time:.4f}s | {scipy_load_time:.4f}s |
| Compute Time | {flex_compute_time:.4f}s | {scipy_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** | **{scipy_total_time:.4f}s** |
## Memory Usage
| Metric | FlexChunk | SciPy |
|--------|-----------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB | {scipy_memory_mb:.2f} MB |
| Memory Ratio | 1.0x | {scipy_memory_mb/flex_memory_mb:.2f}x |
## Comparison
{comparison_result}
"""
return results_summary
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# FlexChunk: Out-of-Core Sparse Matrix-Vector Multiplication
This interactive demo showcases **FlexChunk**, an algorithm for performing Sparse Matrix-Vector Multiplication (SpMV) on matrices that may be too large to fit entirely in memory.
**Key Benefits:**
* Process matrices up to 100M×100M using only ~1.7GB RAM
* Near-linear scaling in both time and memory usage
* Outperforms traditional approaches for large out-of-core matrices
""")
with gr.Tabs() as tabs:
# Standard mode tab
with gr.TabItem("Standard Mode"):
with gr.Row():
with gr.Column():
gr.Markdown("### Matrix Parameters")
standard_size = gr.Slider(
label="Matrix Size (N×N)",
minimum=1000,
maximum=200000,
value=10000,
step=1000,
info="Square matrix dimension (N×N)"
)
standard_density = gr.Slider(
label="Matrix Density",
minimum=0.00001,
maximum=0.01,
value=0.0001,
step=0.00001,
info="Fraction of non-zero elements (0.0001 = 0.01%)"
)
standard_chunks = gr.Slider(
label="Number of Chunks",
minimum=1,
maximum=32,
value=4,
step=1,
info="More chunks = less memory but more overhead"
)
standard_challenging = gr.Checkbox(
label="Use Challenging Matrix",
info="Includes extreme values and special patterns"
)
standard_flexonly = gr.Checkbox(
label="FlexChunk Only",
info="Skip SciPy comparison for better performance"
)
standard_button = gr.Button("Run Benchmark", variant="primary")
standard_output = gr.Markdown()
# Advanced mode tab
with gr.TabItem("Advanced Mode"):
with gr.Row():
with gr.Column():
gr.Markdown("### Large Matrix Parameters")
gr.Markdown("""
⚠️ **Warning**: Processing time varies with matrix size:
- 1M×1M matrices: ~1 second
- 10M×10M matrices: ~10 seconds
- 100M×100M matrices: ~1 minute 47 seconds
For large matrices, FlexChunk-only mode is automatically enabled.
""")
advanced_size = gr.Slider(
label="Matrix Size (N×N)",
minimum=50000,
maximum=300000000,
value=100000,
step=50000,
info="Square matrix dimension - up to 300M×300M (extremely large values will take significant time)"
)
advanced_density = gr.Slider(
label="Matrix Density",
minimum=0.0000001,
maximum=0.001,
value=0.000001,
step=0.0000001,
info="Use lower density for very large matrices"
)
advanced_chunks = gr.Slider(
label="Number of Chunks",
minimum=4,
maximum=100,
value=10,
step=1,
info="More chunks recommended for larger matrices"
)
advanced_challenging = gr.Checkbox(
label="Use Challenging Matrix",
info="Includes extreme values and special patterns"
)
# Force FlexChunk only for advanced mode
gr.Markdown("*SciPy comparison disabled for large matrices*")
advanced_button = gr.Button("Run Advanced Benchmark", variant="primary")
advanced_output = gr.Markdown()
# Event handlers
standard_button.click(
fn=run_benchmark,
inputs=[standard_size, standard_density, standard_chunks, standard_challenging, standard_flexonly],
outputs=standard_output
)
advanced_button.click(
fn=lambda size, density, chunks, challenging: run_benchmark(size, density, chunks, challenging, True),
inputs=[advanced_size, advanced_density, advanced_chunks, advanced_challenging],
outputs=advanced_output
)
gr.Markdown("""
---
### About FlexChunk
FlexChunk enables processing matrices that would normally exceed RAM capacity by dividing them into manageable chunks.
**Links:**
- Read more in the [original article](https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb)
- View source code on [GitHub](https://github.com/DanielSwift1992/FlexChunk)
---
### Benchmark Results
Actual performance measurements from our tests:
| Matrix Size | Non-zero Elements | Total Time | Peak RAM Usage |
|-----------------|-------------------|---------------|----------------|
| 1.0M × 1.0M | 1.2M | 1.07 s | 17.00 MB |
| 10.0M × 10.0M | 12.0M | 10.21 s | 170.00 MB |
| 50.0M × 50.0M | 62.5M | 55.27 s | 850.00 MB |
| 100.0M × 100.0M | 120.0M | 1 min 47.1 s | 1.70 GB |
The algorithm scales nearly linearly and can theoretically handle even larger matrices (up to 300M×300M), with proportionally increased processing time and memory usage.
""")
# Launch the app
if __name__ == "__main__":
demo.launch()