Spaces:
Sleeping
Sleeping
File size: 14,714 Bytes
30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f a7585d3 30b652f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import gradio as gr
import numpy as np
import scipy.sparse as sparse
import time
import os
import shutil
import math
import sys
from pathlib import Path
# Assuming flex_chunk.py and matrix_multiply.py are in the same directory
from flex_chunk import FlexChunk, save_chunk, load_chunk
from matrix_multiply import prepare_chunks, load_chunks, matrix_vector_multiply
# --- Matrix Generation (copied from test_vs_scipy.py) ---
def generate_sparse_matrix(size, density, challenging=False):
"""
Generate a sparse test matrix with optional challenging patterns.
Args:
size: Matrix size (n x n)
density: Target density
challenging: Whether to include challenging patterns and extreme values
Returns:
A scipy.sparse.csr_matrix
"""
# Calculate number of non-zeros
nnz = int(size * size * density)
if nnz == 0: # Ensure at least one non-zero element if density is very low
nnz = 1
if not challenging:
# Simple random matrix
rows = np.random.randint(0, size, nnz)
cols = np.random.randint(0, size, nnz)
data = np.random.rand(nnz)
# Ensure the matrix actually has the specified size if nnz is small
if nnz < size:
# Add diagonal elements to ensure size
diag_indices = np.arange(min(nnz, size))
rows = np.concatenate([rows, diag_indices])
cols = np.concatenate([cols, diag_indices])
data = np.concatenate([data, np.ones(len(diag_indices))]) # Use 1 for diagonal
matrix = sparse.csr_matrix((data, (rows, cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Challenging matrix with specific patterns ---
# Base random matrix (80% of non-zeros)
base_nnz = int(nnz * 0.8)
rows = np.random.randint(0, size, base_nnz)
cols = np.random.randint(0, size, base_nnz)
data = np.random.rand(base_nnz)
# Add diagonal elements (10% of non-zeros)
diag_nnz = int(nnz * 0.1)
diag_indices = np.random.choice(size, diag_nnz, replace=False)
# Add extreme values (10% of non-zeros)
extreme_nnz = max(0, nnz - base_nnz - diag_nnz) # Ensure non-negative
extreme_rows = np.random.randint(0, size, extreme_nnz)
extreme_cols = np.random.randint(0, size, extreme_nnz)
# Mix of very large and very small values
extreme_data = np.concatenate([
np.random.uniform(1e6, 1e9, extreme_nnz // 2),
np.random.uniform(1e-9, 1e-6, extreme_nnz - extreme_nnz // 2)
]) if extreme_nnz > 0 else np.array([])
if extreme_nnz > 0:
np.random.shuffle(extreme_data)
# Combine all components
all_rows = np.concatenate([rows, diag_indices, extreme_rows])
all_cols = np.concatenate([cols, diag_indices, extreme_cols])
all_data = np.concatenate([data, np.random.rand(diag_nnz), extreme_data])
matrix = sparse.csr_matrix((all_data, (all_rows, all_cols)), shape=(size, size))
matrix.sum_duplicates() # Consolidate duplicate entries
return matrix
# --- Benchmark Function (Placeholder) ---
def run_benchmark(size, density, num_chunks, challenging, flex_only=False, progress=gr.Progress()):
# This function will contain the main logic from test_vs_scipy.py
# Adapted for Gradio inputs and outputs
progress(0, desc="Starting Benchmark...")
time.sleep(1) # Placeholder
# 1. Setup storage
storage_dir = Path("./flex_chunk_temp_space")
if storage_dir.exists():
shutil.rmtree(storage_dir)
storage_dir.mkdir(exist_ok=True)
progress(0.1, desc="Generating Matrix...")
# 2. Generate matrix and vector
matrix = generate_sparse_matrix(size, density, challenging)
vector = np.random.rand(size)
actual_nnz = matrix.nnz
actual_density = actual_nnz / (size * size) if size > 0 else 0
matrix_info = f"Matrix: {size}x{size}, Target Density: {density:.6f}, Actual Density: {actual_density:.6f}, NNZ: {actual_nnz}"
print(matrix_info) # For debugging in Hugging Face console
# --- FlexChunk Run ---
progress(0.2, desc="Preparing FlexChunks...")
prepare_start = time.time()
prepare_chunks(matrix, num_chunks, str(storage_dir), verbose=False)
prepare_time = time.time() - prepare_start
progress(0.4, desc="Loading FlexChunks...")
load_start = time.time()
chunks = load_chunks(str(storage_dir), verbose=False)
load_time = time.time() - load_start
progress(0.6, desc="Running FlexChunk SpMV...")
flex_compute_start = time.time()
flex_result = matrix_vector_multiply(chunks, vector, verbose=False)
flex_compute_time = time.time() - flex_compute_start
flex_total_time = load_time + flex_compute_time
# Estimate FlexChunk memory usage
max_chunk_size = max(chunk.data.nbytes + chunk.col_indices.nbytes + chunk.row_offsets.nbytes for chunk in chunks)
flex_operational_memory = max_chunk_size + vector.nbytes + (size * 8) # Chunk + vector + result vector
flex_memory_mb = flex_operational_memory / (1024*1024)
# --- SciPy Run (Optional) ---
if not flex_only:
progress(0.7, desc="Saving SciPy data...")
scipy_temp_dir = storage_dir / "scipy_temp"
scipy_temp_dir.mkdir(exist_ok=True)
matrix_file = scipy_temp_dir / "matrix.npz"
vector_file = scipy_temp_dir / "vector.npy"
scipy_save_start = time.time()
sparse.save_npz(matrix_file, matrix)
np.save(vector_file, vector)
scipy_save_time = time.time() - scipy_save_start
progress(0.8, desc="Loading SciPy data...")
scipy_load_start = time.time()
loaded_matrix = sparse.load_npz(matrix_file)
loaded_vector = np.load(vector_file)
scipy_load_time = time.time() - scipy_load_start
progress(0.9, desc="Running SciPy SpMV...")
scipy_compute_start = time.time()
scipy_result = loaded_matrix @ loaded_vector
scipy_compute_time = time.time() - scipy_compute_start
scipy_total_time = scipy_load_time + scipy_compute_time
# Estimate SciPy memory usage
scipy_memory = loaded_matrix.data.nbytes + loaded_matrix.indices.nbytes + loaded_matrix.indptr.nbytes + loaded_vector.nbytes
scipy_memory_mb = scipy_memory / (1024*1024)
# --- Comparison ---
progress(0.95, desc="Comparing results...")
diff = np.abs(scipy_result - flex_result)
max_diff = np.max(diff) if len(diff) > 0 else 0
mean_diff = np.mean(diff) if len(diff) > 0 else 0
is_close = np.allclose(scipy_result, flex_result, atol=1e-9) # Increased tolerance slightly
comparison_result = f"✅ Results Match! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})" if is_close else f"❌ Results Differ! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})"
# --- Cleanup ---
shutil.rmtree(storage_dir)
progress(1.0, desc="Benchmark Complete")
# --- Format Output ---
if flex_only:
results_summary = f"""
## Matrix Information
{matrix_info}
## FlexChunk Performance
| Stage | Time |
|-------|------|
| Prepare Chunks | {prepare_time:.4f}s |
| Load Chunks | {load_time:.4f}s |
| Compute | {flex_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** |
## Memory Usage
| Metric | Value |
|--------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB |
| Chunks | {num_chunks} |
"""
else:
results_summary = f"""
## Matrix Information
{matrix_info}
## Performance Comparison
| Stage | FlexChunk | SciPy (Out-of-Core) |
|-------|-----------|---------------------|
| Data Preparation | {prepare_time:.4f}s | {scipy_save_time:.4f}s |
| Load Time | {load_time:.4f}s | {scipy_load_time:.4f}s |
| Compute Time | {flex_compute_time:.4f}s | {scipy_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** | **{scipy_total_time:.4f}s** |
## Memory Usage
| Metric | FlexChunk | SciPy |
|--------|-----------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB | {scipy_memory_mb:.2f} MB |
| Memory Ratio | 1.0x | {scipy_memory_mb/flex_memory_mb:.2f}x |
## Comparison
{comparison_result}
"""
return results_summary
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# FlexChunk: Out-of-Core Sparse Matrix-Vector Multiplication
This interactive demo showcases **FlexChunk**, an algorithm for performing Sparse Matrix-Vector Multiplication (SpMV) on matrices that may be too large to fit entirely in memory.
**Key Benefits:**
* Process matrices up to 100M×100M using only ~1.7GB RAM
* Near-linear scaling in both time and memory usage
* Outperforms traditional approaches for large out-of-core matrices
""")
with gr.Tabs() as tabs:
# Standard mode tab
with gr.TabItem("Standard Mode"):
with gr.Row():
with gr.Column():
gr.Markdown("### Matrix Parameters")
standard_size = gr.Slider(
label="Matrix Size (N×N)",
minimum=1000,
maximum=200000,
value=10000,
step=1000,
info="Square matrix dimension (N×N)"
)
standard_density = gr.Slider(
label="Matrix Density",
minimum=0.00001,
maximum=0.01,
value=0.0001,
step=0.00001,
info="Fraction of non-zero elements (0.0001 = 0.01%)"
)
standard_chunks = gr.Slider(
label="Number of Chunks",
minimum=1,
maximum=32,
value=4,
step=1,
info="More chunks = less memory but more overhead"
)
standard_challenging = gr.Checkbox(
label="Use Challenging Matrix",
info="Includes extreme values and special patterns"
)
standard_flexonly = gr.Checkbox(
label="FlexChunk Only",
info="Skip SciPy comparison for better performance"
)
standard_button = gr.Button("Run Benchmark", variant="primary")
standard_output = gr.Markdown()
# Advanced mode tab
with gr.TabItem("Advanced Mode"):
with gr.Row():
with gr.Column():
gr.Markdown("### Large Matrix Parameters")
gr.Markdown("""
⚠️ **Warning**: Processing time varies with matrix size:
- 1M×1M matrices: ~1 second
- 10M×10M matrices: ~10 seconds
- 100M×100M matrices: ~1 minute 47 seconds
For large matrices, FlexChunk-only mode is automatically enabled.
""")
advanced_size = gr.Slider(
label="Matrix Size (N×N)",
minimum=50000,
maximum=300000000,
value=100000,
step=50000,
info="Square matrix dimension - up to 300M×300M (extremely large values will take significant time)"
)
advanced_density = gr.Slider(
label="Matrix Density",
minimum=0.0000001,
maximum=0.001,
value=0.000001,
step=0.0000001,
info="Use lower density for very large matrices"
)
advanced_chunks = gr.Slider(
label="Number of Chunks",
minimum=4,
maximum=100,
value=10,
step=1,
info="More chunks recommended for larger matrices"
)
advanced_challenging = gr.Checkbox(
label="Use Challenging Matrix",
info="Includes extreme values and special patterns"
)
# Force FlexChunk only for advanced mode
gr.Markdown("*SciPy comparison disabled for large matrices*")
advanced_button = gr.Button("Run Advanced Benchmark", variant="primary")
advanced_output = gr.Markdown()
# Event handlers
standard_button.click(
fn=run_benchmark,
inputs=[standard_size, standard_density, standard_chunks, standard_challenging, standard_flexonly],
outputs=standard_output
)
advanced_button.click(
fn=lambda size, density, chunks, challenging: run_benchmark(size, density, chunks, challenging, True),
inputs=[advanced_size, advanced_density, advanced_chunks, advanced_challenging],
outputs=advanced_output
)
gr.Markdown("""
---
### About FlexChunk
FlexChunk enables processing matrices that would normally exceed RAM capacity by dividing them into manageable chunks.
**Links:**
- Read more in the [original article](https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb)
- View source code on [GitHub](https://github.com/DanielSwift1992/FlexChunk)
---
### Benchmark Results
Actual performance measurements from our tests:
| Matrix Size | Non-zero Elements | Total Time | Peak RAM Usage |
|-----------------|-------------------|---------------|----------------|
| 1.0M × 1.0M | 1.2M | 1.07 s | 17.00 MB |
| 10.0M × 10.0M | 12.0M | 10.21 s | 170.00 MB |
| 50.0M × 50.0M | 62.5M | 55.27 s | 850.00 MB |
| 100.0M × 100.0M | 120.0M | 1 min 47.1 s | 1.70 GB |
The algorithm scales nearly linearly and can theoretically handle even larger matrices (up to 300M×300M), with proportionally increased processing time and memory usage.
""")
# Launch the app
if __name__ == "__main__":
demo.launch() |