File size: 14,714 Bytes
30b652f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7585d3
30b652f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
 
 
 
 
 
a7585d3
 
 
30b652f
 
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
a7585d3
30b652f
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
 
 
 
 
 
 
a7585d3
30b652f
a7585d3
30b652f
a7585d3
30b652f
a7585d3
 
 
 
30b652f
 
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
 
a7585d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b652f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
import numpy as np
import scipy.sparse as sparse
import time
import os
import shutil
import math
import sys
from pathlib import Path

# Assuming flex_chunk.py and matrix_multiply.py are in the same directory
from flex_chunk import FlexChunk, save_chunk, load_chunk
from matrix_multiply import prepare_chunks, load_chunks, matrix_vector_multiply

# --- Matrix Generation (copied from test_vs_scipy.py) ---

def generate_sparse_matrix(size, density, challenging=False):
    """
    Generate a sparse test matrix with optional challenging patterns.
    
    Args:
        size: Matrix size (n x n)
        density: Target density
        challenging: Whether to include challenging patterns and extreme values
        
    Returns:
        A scipy.sparse.csr_matrix
    """
    # Calculate number of non-zeros
    nnz = int(size * size * density)
    if nnz == 0: # Ensure at least one non-zero element if density is very low
        nnz = 1 
        
    if not challenging:
        # Simple random matrix
        rows = np.random.randint(0, size, nnz)
        cols = np.random.randint(0, size, nnz)
        data = np.random.rand(nnz)
        # Ensure the matrix actually has the specified size if nnz is small
        if nnz < size:
             # Add diagonal elements to ensure size
             diag_indices = np.arange(min(nnz, size))
             rows = np.concatenate([rows, diag_indices])
             cols = np.concatenate([cols, diag_indices])
             data = np.concatenate([data, np.ones(len(diag_indices))]) # Use 1 for diagonal
        
        matrix = sparse.csr_matrix((data, (rows, cols)), shape=(size, size))
        matrix.sum_duplicates() # Consolidate duplicate entries
        return matrix
    
    # --- Challenging matrix with specific patterns ---
    # Base random matrix (80% of non-zeros)
    base_nnz = int(nnz * 0.8)
    rows = np.random.randint(0, size, base_nnz)
    cols = np.random.randint(0, size, base_nnz)
    data = np.random.rand(base_nnz)
    
    # Add diagonal elements (10% of non-zeros)
    diag_nnz = int(nnz * 0.1)
    diag_indices = np.random.choice(size, diag_nnz, replace=False)
    
    # Add extreme values (10% of non-zeros)
    extreme_nnz = max(0, nnz - base_nnz - diag_nnz) # Ensure non-negative
    extreme_rows = np.random.randint(0, size, extreme_nnz)
    extreme_cols = np.random.randint(0, size, extreme_nnz)
    
    # Mix of very large and very small values
    extreme_data = np.concatenate([
        np.random.uniform(1e6, 1e9, extreme_nnz // 2),
        np.random.uniform(1e-9, 1e-6, extreme_nnz - extreme_nnz // 2)
    ]) if extreme_nnz > 0 else np.array([])
    if extreme_nnz > 0:
        np.random.shuffle(extreme_data)
    
    # Combine all components
    all_rows = np.concatenate([rows, diag_indices, extreme_rows])
    all_cols = np.concatenate([cols, diag_indices, extreme_cols])
    all_data = np.concatenate([data, np.random.rand(diag_nnz), extreme_data])
    
    matrix = sparse.csr_matrix((all_data, (all_rows, all_cols)), shape=(size, size))
    matrix.sum_duplicates() # Consolidate duplicate entries
    return matrix

# --- Benchmark Function (Placeholder) ---

def run_benchmark(size, density, num_chunks, challenging, flex_only=False, progress=gr.Progress()):
    # This function will contain the main logic from test_vs_scipy.py
    # Adapted for Gradio inputs and outputs
    progress(0, desc="Starting Benchmark...")
    time.sleep(1) # Placeholder
    
    # 1. Setup storage
    storage_dir = Path("./flex_chunk_temp_space")
    if storage_dir.exists():
        shutil.rmtree(storage_dir)
    storage_dir.mkdir(exist_ok=True)
    
    progress(0.1, desc="Generating Matrix...")
    # 2. Generate matrix and vector
    matrix = generate_sparse_matrix(size, density, challenging)
    vector = np.random.rand(size)
    actual_nnz = matrix.nnz
    actual_density = actual_nnz / (size * size) if size > 0 else 0
    
    matrix_info = f"Matrix: {size}x{size}, Target Density: {density:.6f}, Actual Density: {actual_density:.6f}, NNZ: {actual_nnz}"
    print(matrix_info) # For debugging in Hugging Face console
    
    # --- FlexChunk Run ---
    progress(0.2, desc="Preparing FlexChunks...")
    prepare_start = time.time()
    prepare_chunks(matrix, num_chunks, str(storage_dir), verbose=False)
    prepare_time = time.time() - prepare_start

    progress(0.4, desc="Loading FlexChunks...")
    load_start = time.time()
    chunks = load_chunks(str(storage_dir), verbose=False)
    load_time = time.time() - load_start
    
    progress(0.6, desc="Running FlexChunk SpMV...")
    flex_compute_start = time.time()
    flex_result = matrix_vector_multiply(chunks, vector, verbose=False)
    flex_compute_time = time.time() - flex_compute_start
    flex_total_time = load_time + flex_compute_time
    
    # Estimate FlexChunk memory usage
    max_chunk_size = max(chunk.data.nbytes + chunk.col_indices.nbytes + chunk.row_offsets.nbytes for chunk in chunks)
    flex_operational_memory = max_chunk_size + vector.nbytes + (size * 8)  # Chunk + vector + result vector
    flex_memory_mb = flex_operational_memory / (1024*1024)
    
    # --- SciPy Run (Optional) ---
    if not flex_only:
        progress(0.7, desc="Saving SciPy data...")
        scipy_temp_dir = storage_dir / "scipy_temp"
        scipy_temp_dir.mkdir(exist_ok=True)
        matrix_file = scipy_temp_dir / "matrix.npz"
        vector_file = scipy_temp_dir / "vector.npy"
        
        scipy_save_start = time.time()
        sparse.save_npz(matrix_file, matrix)
        np.save(vector_file, vector)
        scipy_save_time = time.time() - scipy_save_start
        
        progress(0.8, desc="Loading SciPy data...")
        scipy_load_start = time.time()
        loaded_matrix = sparse.load_npz(matrix_file)
        loaded_vector = np.load(vector_file)
        scipy_load_time = time.time() - scipy_load_start
        
        progress(0.9, desc="Running SciPy SpMV...")
        scipy_compute_start = time.time()
        scipy_result = loaded_matrix @ loaded_vector
        scipy_compute_time = time.time() - scipy_compute_start
        scipy_total_time = scipy_load_time + scipy_compute_time
        
        # Estimate SciPy memory usage
        scipy_memory = loaded_matrix.data.nbytes + loaded_matrix.indices.nbytes + loaded_matrix.indptr.nbytes + loaded_vector.nbytes
        scipy_memory_mb = scipy_memory / (1024*1024)
        
        # --- Comparison ---
        progress(0.95, desc="Comparing results...")
        diff = np.abs(scipy_result - flex_result)
        max_diff = np.max(diff) if len(diff) > 0 else 0
        mean_diff = np.mean(diff) if len(diff) > 0 else 0
        is_close = np.allclose(scipy_result, flex_result, atol=1e-9) # Increased tolerance slightly
        comparison_result = f"✅ Results Match! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})" if is_close else f"❌ Results Differ! (Max Diff: {max_diff:.2e}, Mean Diff: {mean_diff:.2e})"
    
    # --- Cleanup ---
    shutil.rmtree(storage_dir)
    
    progress(1.0, desc="Benchmark Complete")
    
    # --- Format Output ---
    if flex_only:
        results_summary = f"""
## Matrix Information
{matrix_info}

## FlexChunk Performance
| Stage | Time |
|-------|------|
| Prepare Chunks | {prepare_time:.4f}s |
| Load Chunks | {load_time:.4f}s |
| Compute | {flex_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** |

## Memory Usage
| Metric | Value |
|--------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB |
| Chunks | {num_chunks} |
"""
    else:
        results_summary = f"""
## Matrix Information
{matrix_info}

## Performance Comparison

| Stage | FlexChunk | SciPy (Out-of-Core) |
|-------|-----------|---------------------|
| Data Preparation | {prepare_time:.4f}s | {scipy_save_time:.4f}s |  
| Load Time | {load_time:.4f}s | {scipy_load_time:.4f}s |
| Compute Time | {flex_compute_time:.4f}s | {scipy_compute_time:.4f}s |
| **Total (Load+Compute)** | **{flex_total_time:.4f}s** | **{scipy_total_time:.4f}s** |

## Memory Usage
| Metric | FlexChunk | SciPy |
|--------|-----------|-------|
| Peak RAM Usage | {flex_memory_mb:.2f} MB | {scipy_memory_mb:.2f} MB |
| Memory Ratio | 1.0x | {scipy_memory_mb/flex_memory_mb:.2f}x |

## Comparison
{comparison_result}
"""
    
    return results_summary

# --- Gradio Interface ---

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # FlexChunk: Out-of-Core Sparse Matrix-Vector Multiplication
    
    This interactive demo showcases **FlexChunk**, an algorithm for performing Sparse Matrix-Vector Multiplication (SpMV) on matrices that may be too large to fit entirely in memory.
    
    **Key Benefits:**
    * Process matrices up to 100M×100M using only ~1.7GB RAM
    * Near-linear scaling in both time and memory usage
    * Outperforms traditional approaches for large out-of-core matrices
    """)
    
    with gr.Tabs() as tabs:
        # Standard mode tab
        with gr.TabItem("Standard Mode"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Matrix Parameters")
                    standard_size = gr.Slider(
                        label="Matrix Size (N×N)", 
                        minimum=1000, 
                        maximum=200000, 
                        value=10000, 
                        step=1000,
                        info="Square matrix dimension (N×N)"
                    )
                    standard_density = gr.Slider(
                        label="Matrix Density", 
                        minimum=0.00001, 
                        maximum=0.01, 
                        value=0.0001, 
                        step=0.00001,
                        info="Fraction of non-zero elements (0.0001 = 0.01%)"
                    )
                    standard_chunks = gr.Slider(
                        label="Number of Chunks", 
                        minimum=1, 
                        maximum=32, 
                        value=4, 
                        step=1,
                        info="More chunks = less memory but more overhead"
                    )
                    standard_challenging = gr.Checkbox(
                        label="Use Challenging Matrix",
                        info="Includes extreme values and special patterns"
                    )
                    standard_flexonly = gr.Checkbox(
                        label="FlexChunk Only",
                        info="Skip SciPy comparison for better performance"
                    )
                    standard_button = gr.Button("Run Benchmark", variant="primary")
            
            standard_output = gr.Markdown()
        
        # Advanced mode tab
        with gr.TabItem("Advanced Mode"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Large Matrix Parameters")
                    gr.Markdown("""
                    ⚠️ **Warning**: Processing time varies with matrix size:
                    - 1M×1M matrices: ~1 second
                    - 10M×10M matrices: ~10 seconds
                    - 100M×100M matrices: ~1 minute 47 seconds
                    
                    For large matrices, FlexChunk-only mode is automatically enabled.
                    """)
                    
                    advanced_size = gr.Slider(
                        label="Matrix Size (N×N)", 
                        minimum=50000, 
                        maximum=300000000, 
                        value=100000, 
                        step=50000,
                        info="Square matrix dimension - up to 300M×300M (extremely large values will take significant time)"
                    )
                    advanced_density = gr.Slider(
                        label="Matrix Density", 
                        minimum=0.0000001, 
                        maximum=0.001, 
                        value=0.000001, 
                        step=0.0000001,
                        info="Use lower density for very large matrices"
                    )
                    advanced_chunks = gr.Slider(
                        label="Number of Chunks", 
                        minimum=4, 
                        maximum=100, 
                        value=10, 
                        step=1,
                        info="More chunks recommended for larger matrices"
                    )
                    advanced_challenging = gr.Checkbox(
                        label="Use Challenging Matrix",
                        info="Includes extreme values and special patterns"
                    )
                    
                    # Force FlexChunk only for advanced mode
                    gr.Markdown("*SciPy comparison disabled for large matrices*")
                    advanced_button = gr.Button("Run Advanced Benchmark", variant="primary")
            
            advanced_output = gr.Markdown()
    
    # Event handlers
    standard_button.click(
        fn=run_benchmark,
        inputs=[standard_size, standard_density, standard_chunks, standard_challenging, standard_flexonly],
        outputs=standard_output
    )
    
    advanced_button.click(
        fn=lambda size, density, chunks, challenging: run_benchmark(size, density, chunks, challenging, True),
        inputs=[advanced_size, advanced_density, advanced_chunks, advanced_challenging],
        outputs=advanced_output
    )
    
    gr.Markdown("""
    ---
    ### About FlexChunk
    
    FlexChunk enables processing matrices that would normally exceed RAM capacity by dividing them into manageable chunks.
    
    **Links:**
    - Read more in the [original article](https://www.lesswrong.com/posts/zpRhsdDkWygTDScxb/flexchunk-enabling-100m-100m-out-of-core-spmv-1-8-min-1-7-gb)
    - View source code on [GitHub](https://github.com/DanielSwift1992/FlexChunk)
    
    ---
    ### Benchmark Results
    
    Actual performance measurements from our tests:
    
    | Matrix Size     | Non-zero Elements | Total Time    | Peak RAM Usage |
    |-----------------|-------------------|---------------|----------------|
    | 1.0M × 1.0M     | 1.2M              | 1.07 s        | 17.00 MB       |
    | 10.0M × 10.0M   | 12.0M             | 10.21 s       | 170.00 MB      |
    | 50.0M × 50.0M   | 62.5M             | 55.27 s       | 850.00 MB      |
    | 100.0M × 100.0M | 120.0M            | 1 min 47.1 s  | 1.70 GB        |
    
    The algorithm scales nearly linearly and can theoretically handle even larger matrices (up to 300M×300M), with proportionally increased processing time and memory usage.
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()