File size: 28,332 Bytes
fd66990 6395478 7e8c870 fd66990 79966e4 fd66990 e108f99 fd66990 b3564a4 fd66990 d6bdbbd e108f99 fd66990 87d5798 4bcc56d fd66990 79966e4 fd66990 dc3e5a5 fd66990 4e1bcbc bf7c38b d6bdbbd ad260e4 65390be 1d635fd 3ae963b 1d635fd 35625e6 87d5798 35625e6 b85f2cf 610ce11 35625e6 e6723aa e108f99 fa9bd8d c4be662 e108f99 bd6923a d6bdbbd bd6923a d6bdbbd bd6923a d6bdbbd 252ce8c d6bdbbd 252ce8c d6bdbbd 252ce8c d6bdbbd 252ce8c d6bdbbd bd6923a d6bdbbd bd6923a d6bdbbd 8687bfb d6bdbbd 8687bfb d6bdbbd bd6923a d6bdbbd bd6923a d6bdbbd 79966e4 d6bdbbd 79966e4 d6bdbbd 79966e4 d6bdbbd 79966e4 d6bdbbd 79966e4 d6bdbbd 6395478 bd6923a d6bdbbd ca76aee d6bdbbd c1a86cd bd6923a 9980db3 6395478 d6bdbbd bd6923a d6bdbbd bd6923a d6bdbbd bd6923a 6395478 d6bdbbd 79966e4 35625e6 d6bdbbd 35625e6 ee3fdf5 35625e6 f3bb80d 35625e6 ee3fdf5 35625e6 b038c33 ee3fdf5 f6a28d0 b038c33 35625e6 b038c33 ee3fdf5 c0ddcb5 ee3fdf5 c0ddcb5 ee3fdf5 c0ddcb5 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 d6bdbbd c0ddcb5 5e30500 0e0ac87 d6bdbbd fd66990 d6bdbbd fd66990 d6bdbbd fd66990 0e0ac87 fd66990 d6bdbbd 0e0ac87 fd66990 d6bdbbd fd66990 d6bdbbd fd66990 d6bdbbd 6c51afa fd66990 6c51afa fd66990 d6bdbbd fd66990 d6bdbbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
# Standard library imports
import logging
import os
import re
from typing import Dict, Any, List
from urllib.parse import urlparse
import torch
# Third-party imports
import requests
import wandb
from transformers import AutoModelForCausalLM, AutoTokenizer
# LlamaIndex core imports
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.core.agent.workflow import FunctionAgent, ReActAgent, AgentStream
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context
from llama_index.postprocessor.colpali_rerank import ColPaliRerank
# LlamaIndex specialized imports
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.readers.assemblyai import AssemblyAIAudioTranscriptReader
from llama_index.readers.json import JSONReader
from llama_index.readers.web import TrafilaturaWebReader
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.core.agent.workflow import AgentWorkflow
# --- Import all required official LlamaIndex Readers ---
from llama_index.readers.file import (
PDFReader,
DocxReader,
CSVReader,
PandasExcelReader,
)
from typing import List, Union
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.core.tools import QueryEngineTool
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.query_pipeline import QueryPipeline
import importlib.util
import sys
# Comprehensive callback manager
callback_manager = CallbackManager([
wandb_callback, # For W&B tracking
llama_debug # For general debugging
])
logging.basicConfig(level=logging.INFO)
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
def get_max_memory_config(max_memory_per_gpu):
"""Generate max_memory config for available GPUs"""
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
max_memory = {}
for i in range(num_gpus):
max_memory[i] = max_memory_per_gpu
return max_memory
return None
model_id = "google/gemma-3-12b-it"
proj_llm = HuggingFaceLLM(
model_name=model_id,
tokenizer_name=model_id,
device_map="auto",
model_kwargs={
"torch_dtype": "auto",
"max_memory": get_max_memory_config("10GB")
},
generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused
)
code_llm = HuggingFaceLLM(
model_name="Qwen/Qwen2.5-Coder-3B",
tokenizer_name="Qwen/Qwen2.5-Coder-3B",
device_map="auto",
model_kwargs={
"torch_dtype": "auto",
"max_memory": get_max_memory_config("3GB")
},
# Set generation parameters for precise, non-creative code output
generate_kwargs={"temperature": 0.0, "do_sample": False}
)
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([wandb_callback, llama_debug])
Settings.llm = proj_llm
Settings.embed_model = embed_model
Settings.callback_manager = callback_manager
def read_and_parse_content(input_path: str) -> List[Document]:
"""
Reads and parses content from a local file path into Document objects.
URL handling has been moved to search_and_extract_top_url.
"""
# Remove URL handling - this will now only handle local files
if not os.path.exists(input_path):
return [Document(text=f"Error: File not found at {input_path}")]
file_extension = os.path.splitext(input_path)[1].lower()
# Readers map
readers_map = {
'.pdf': PDFReader(),
'.docx': DocxReader(),
'.doc': DocxReader(),
'.csv': CSVReader(),
'.json': JSONReader(),
'.xlsx': PandasExcelReader(),
}
if file_extension in ['.mp3', '.mp4', '.wav', '.m4a', '.flac']:
try:
loader = AssemblyAIAudioTranscriptReader(file_path=input_path)
documents = loader.load_data()
return documents
except Exception as e:
return [Document(text=f"Error transcribing audio: {e}")]
if file_extension in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
# Load the actual image content, not just the path
try:
with open(input_path, 'rb') as f:
image_data = f.read()
return [Document(
text=f"IMAGE_CONTENT_BINARY",
metadata={
"source": input_path,
"type": "image",
"path": input_path,
"image_data": image_data # Store actual image data
}
)]
except Exception as e:
return [Document(text=f"Error reading image: {e}")]
if file_extension in readers_map:
loader = readers_map[file_extension]
documents = loader.load_data(file=input_path)
else:
# Fallback for text files
try:
with open(input_path, 'r', encoding='utf-8') as f:
content = f.read()
documents = [Document(text=content, metadata={"source": input_path})]
except Exception as e:
return [Document(text=f"Error reading file as plain text: {e}")]
# Add source metadata
for doc in documents:
doc.metadata["source"] = input_path
return documents
class DynamicQueryEngineManager:
"""Single unified manager for all RAG operations - replaces the entire static approach."""
def __init__(self, initial_documents: List[str] = None):
self.documents = []
self.query_engine_tool = None
# Load initial documents if provided
if initial_documents:
self._load_initial_documents(initial_documents)
self._create_rag_tool()
def _load_initial_documents(self, document_paths: List[str]):
"""Load initial documents using read_and_parse_content."""
for path in document_paths:
docs = read_and_parse_content(path)
self.documents.extend(docs)
print(f"Loaded {len(self.documents)} initial documents")
def _create_rag_tool(self):
"""Create RAG tool using multimodal-aware parsing."""
documents = self.documents if self.documents else [
Document(text="No documents loaded yet. Use web search to add content.")
]
# Separate text and image documents for proper processing
text_documents = []
image_documents = []
for doc in documents:
doc_type = doc.metadata.get("type", "")
source = doc.metadata.get("source", "").lower()
file_type = doc.metadata.get("file_type", "")
# Identify image documents
if (doc_type in ["image", "web_image"] or
file_type in ['jpg', 'png', 'jpeg', 'gif', 'bmp', 'webp'] or
any(ext in source for ext in ['.jpg', '.png', '.jpeg', '.gif', '.bmp', '.webp'])):
image_documents.append(doc)
else:
text_documents.append(doc)
# Use UnstructuredElementNodeParser for text content with multimodal awareness
element_parser = UnstructuredElementNodeParser()
nodes = []
# Process text documents with UnstructuredElementNodeParser
if text_documents:
try:
text_nodes = element_parser.get_nodes_from_documents(text_documents)
nodes.extend(text_nodes)
except Exception as e:
print(f"Error parsing text documents with UnstructuredElementNodeParser: {e}")
# Fallback to simple parsing if UnstructuredElementNodeParser fails
from llama_index.core.node_parser import SimpleNodeParser
simple_parser = SimpleNodeParser.from_defaults(chunk_size=1024, chunk_overlap=200)
text_nodes = simple_parser.get_nodes_from_documents(text_documents)
nodes.extend(text_nodes)
# Process image documents as ImageNodes
if image_documents:
for img_doc in image_documents:
try:
image_node = ImageNode(
text=img_doc.text or f"Image content from {img_doc.metadata.get('source', 'unknown')}",
metadata=img_doc.metadata,
image_path=img_doc.metadata.get("path"),
image=img_doc.metadata.get("image_data")
)
nodes.append(image_node)
except Exception as e:
print(f"Error creating ImageNode: {e}")
# Fallback to regular TextNode for images
text_node = TextNode(
text=img_doc.text or f"Image content from {img_doc.metadata.get('source', 'unknown')}",
metadata=img_doc.metadata
)
nodes.append(text_node)
index = VectorStoreIndex(nodes)
class HybridReranker:
def __init__(self):
self.text_reranker = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
top_n=3
)
self.visual_reranker = ColPaliRerank(
top_n=3,
model_name="vidore/colpali-v1.2",
device="cuda"
)
def postprocess_nodes(self, nodes, query_bundle):
# Your exact implementation
text_nodes = []
visual_nodes = []
for node in nodes:
if (hasattr(node, 'image_path') and node.image_path) or \
(hasattr(node, 'metadata') and node.metadata.get('file_type') in ['jpg', 'png', 'jpeg', 'pdf']) or \
(hasattr(node, 'metadata') and node.metadata.get('type') in ['image', 'web_image']):
visual_nodes.append(node)
else:
text_nodes.append(node)
reranked_text = []
reranked_visual = []
if text_nodes:
reranked_text = self.text_reranker.postprocess_nodes(text_nodes, query_bundle)
if visual_nodes:
reranked_visual = self.visual_reranker.postprocess_nodes(visual_nodes, query_bundle)
combined_results = []
max_len = max(len(reranked_text), len(reranked_visual))
for i in range(max_len):
if i < len(reranked_text):
combined_results.append(reranked_text[i])
if i < len(reranked_visual):
combined_results.append(reranked_visual[i])
return combined_results[:5]
hybrid_reranker = HybridReranker()
query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[hybrid_reranker],
)
self.query_engine_tool = QueryEngineTool.from_defaults(
query_engine=query_engine,
name="dynamic_hybrid_multimodal_rag_tool",
description=(
"Advanced dynamic knowledge base with hybrid reranking. "
"Uses ColPali for visual content and SentenceTransformer for text content. "
"Automatically updated with web search content."
)
)
def add_documents(self, new_documents: List[Document]):
"""Add documents from web search and recreate tool."""
self.documents.extend(new_documents)
self._create_rag_tool() # Recreate with ALL documents
print(f"Added {len(new_documents)} documents. Total: {len(self.documents)}")
def get_tool(self):
return self.query_engine_tool
# Global instance
dynamic_qe_manager = DynamicQueryEngineManager()
# 1. Create the base DuckDuckGo search tool from the official spec.
# This tool returns text summaries of search results, not just URLs.
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1]
def search_and_extract_content_from_url(query: str) -> List[Document]:
"""
Searches web, gets top URL, and extracts both text content and images.
Returns a list of Document objects containing the extracted content.
"""
# Get URL from search
search_results = base_duckduckgo_tool(query, max_results=1)
url_match = re.search(r"https?://\S+", str(search_results))
if not url_match:
return [Document(text="No URL could be extracted from the search results.")]
url = url_match.group(0)[:-2]
documents = []
try:
# Check if it's a YouTube URL
if "youtube" in urlparse(url).netloc:
loader = YoutubeTranscriptReader()
documents = loader.load_data(youtubelinks=[url])
else:
loader = TrafilaturaWebReader (include_images = True)
documents = loader.load_data(urls=[url])
def enhanced_web_search_and_update(query: str) -> str:
"""
Performs web search, extracts content, and adds it to the dynamic query engine.
"""
# Extract content from web search
documents = search_and_extract_content_from_url(query)
# Add documents to the dynamic query engine
if documents and not any("Error" in doc.text for doc in documents):
dynamic_qe_manager.add_documents(documents)
# Return summary of what was added
text_docs = [doc for doc in documents if doc.metadata.get("type") == "web_text"]
image_docs = [doc for doc in documents if doc.metadata.get("type") == "web_image"]
summary = f"Successfully added web content to knowledge base:\n"
summary += f"- {len(text_docs)} text documents\n"
summary += f"- {len(image_docs)} images\n"
summary += f"Source: {documents[0].metadata.get('source', 'Unknown')}"
return summary
else:
error_msg = documents[0].text if documents else "No content extracted"
return f"Failed to extract web content: {error_msg}"
# Create the enhanced web search tool
enhanced_web_search_tool = FunctionTool.from_defaults(
fn=enhanced_web_search_and_update,
name="enhanced_web_search",
description="Search the web, extract content and images, and add them to the knowledge base for future queries."
)
def safe_import(module_name):
"""Safely import a module, return None if not available"""
try:
return __import__(module_name)
except ImportError:
return None
safe_globals = {
"__builtins__": {
"len": len, "str": str, "int": int, "float": float,
"list": list, "dict": dict, "sum": sum, "max": max, "min": min,
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate,
"range": range, "zip": zip, "map": map, "filter": filter,
"any": any, "all": all, "type": type, "isinstance": isinstance,
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple
}
}
# Core modules (always available)
core_modules = [
"math", "datetime", "re", "os", "sys", "json", "csv", "random",
"itertools", "collections", "functools", "operator", "copy",
"decimal", "fractions", "uuid", "typing", "statistics", "pathlib",
"glob", "shutil", "tempfile", "pickle", "gzip", "zipfile", "tarfile",
"base64", "hashlib", "secrets", "hmac", "textwrap", "string",
"difflib", "socket", "ipaddress", "logging", "warnings", "traceback",
"pprint", "threading", "queue", "sqlite3", "urllib", "html", "xml",
"configparser"
]
for module in core_modules:
imported = safe_import(module)
if imported:
safe_globals[module] = imported
# Data science modules (may not be available)
optional_modules = {
"numpy": "numpy",
"np": "numpy",
"pandas": "pandas",
"pd": "pandas",
"scipy": "scipy",
"matplotlib": "matplotlib",
"plt": "matplotlib.pyplot",
"seaborn": "seaborn",
"sns": "seaborn",
"plotly": "plotly",
"sklearn": "sklearn",
"statsmodels": "statsmodels",
"PIL": "PIL",
"skimage": "skimage",
"pytz": "pytz",
"requests": "requests",
"bs4": "bs4",
"sympy": "sympy",
"tqdm": "tqdm",
"yaml": "yaml",
"toml": "toml"
}
for alias, module_name in optional_modules.items():
imported = safe_import(module_name)
if imported:
safe_globals[alias] = imported
# Special cases
if safe_globals.get("bs4"):
safe_globals["BeautifulSoup"] = safe_globals["bs4"].BeautifulSoup
if safe_globals.get("PIL"):
image_module = safe_import("PIL.Image")
if image_module:
safe_globals["Image"] = image_module
def execute_python_code(code: str) -> str:
try:
exec_locals = {}
exec(code, safe_globals, exec_locals)
if 'result' in exec_locals:
return str(exec_locals['result'])
else:
return "Code executed successfully"
except Exception as e:
return f"Code execution failed: {str(e)}"
code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Executes Python code safely for calculations and data processing"
)
def clean_response(response: str) -> str:
"""Clean response by removing common prefixes"""
response_clean = response.strip()
prefixes_to_remove = [
"FINAL ANSWER:", "Answer:", "The answer is:",
"Based on my analysis,", "After reviewing,",
"The result is:", "Final result:", "According to",
"In conclusion,", "Therefore,", "Thus,"
]
for prefix in prefixes_to_remove:
if response_clean.startswith(prefix):
response_clean = response_clean[len(prefix):].strip()
return response_clean
def llm_reformat(response: str, question: str) -> str:
"""Use LLM to reformat the response according to GAIA requirements"""
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
GAIA Format Rules:
- ONLY the precise answer, no explanations
- No prefixes like "Answer:", "The result is:", etc.
- For numbers: just the number (e.g., "156", "3.14e+8")
- For names: just the name (e.g., "Martinez", "Sarah")
- For lists: comma-separated (e.g., "C++, Java, Python")
- For country codes: just the code (e.g., "FRA", "US")
- For yes/no: just "Yes" or "No"
Examples:
Question: "How many papers were published?"
Response: "The analysis shows 156 papers were published in total."
Answer: 156
Question: "What is the last name of the developer?"
Response: "The developer mentioned is Dr. Sarah Martinez from the AI team."
Answer: Martinez
Question: "List programming languages, alphabetized:"
Response: "The languages mentioned are Python, Java, and C++. Alphabetized: C++, Java, Python"
Answer: C++, Java, Python
Now extract the exact answer:
Question: {question}
Response: {response}
Answer:"""
try:
# Use the global LLM instance
formatting_response = proj_llm.complete(format_prompt)
answer = str(formatting_response).strip()
# Extract just the answer after "Answer:"
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
except Exception as e:
print(f"LLM reformatting failed: {e}")
return response
def final_answer_tool(agent_response: str, question: str) -> str:
"""
Simplified final answer tool using only LLM reformatting.
Args:
agent_response: The raw response from agent reasoning
question: The original question for context
Returns:
Exact answer in GAIA format
"""
# Step 1: Clean the response
cleaned_response = clean_response(agent_response)
# Step 2: Use LLM reformatting
formatted_answer = llm_reformat(cleaned_response, question)
print(f"Original response cleaned: {cleaned_response[:100]}...")
print(f"LLM formatted answer: {formatted_answer}")
return formatted_answer
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent...")
# Vérification du token HuggingFace
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work")
# Initialize the dynamic query engine manager
self.dynamic_qe_manager = DynamicQueryEngineManager()
# Create enhanced agents with dynamic tools
self.external_knowledge_agent = ReActAgent(
name="external_knowledge_agent",
description="Advanced information retrieval with dynamic knowledge base",
system_prompt="""You are an advanced information specialist with a sophisticated RAG system.
Your knowledge base uses hybrid reranking and grows dynamically with each web search and document addition.
Always add relevant content to your knowledge base, then query it for answers.""",
tools=[
enhanced_web_search_tool,
self.dynamic_qe_manager.get_tool(),
code_execution_tool
],
llm=proj_llm,
max_steps=8,
verbose=True,
callback_manager=callback_manager,
)
self.code_agent = ReActAgent(
name="code_agent",
description="Handles Python code for calculations and data processing",
system_prompt="You are a Python programming specialist. You work with Python code to perform calculations, data analysis, and mathematical operations.",
tools=[code_execution_tool],
llm=code_llm,
max_steps=6,
verbose=True,
callback_manager=callback_manager,
)
# Fixed indentation: coordinator initialization inside __init__
self.coordinator = AgentWorkflow(
agents=[self.external_knowledge_agent, self.code_agent],
root_agent="external_knowledge_agent"
)
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
"""Download file associated with task_id"""
try:
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
response.raise_for_status()
filename = f"task_{task_id}_file"
with open(filename, 'wb') as f:
f.write(response.content)
return filename
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
return None
def add_documents_to_knowledge_base(self, file_path: str):
"""Add downloaded GAIA documents to the dynamic knowledge base"""
try:
documents = read_and_parse_content(file_path)
if documents:
self.dynamic_qe_manager.add_documents(documents)
print(f"Added {len(documents)} documents from {file_path} to dynamic knowledge base")
# Update the agent's tools with the refreshed query engine
self.external_knowledge_agent.tools = [
enhanced_web_search_tool,
self.dynamic_qe_manager.get_tool(), # Get the updated tool
code_execution_tool
]
return True
except Exception as e:
print(f"Failed to add documents from {file_path}: {e}")
return False
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
"""
Solve GAIA question with dynamic knowledge base integration
"""
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
# Try to download and add file to knowledge base if task_id provided
file_path = None
if task_id:
try:
file_path = self.download_gaia_file(task_id)
if file_path:
# Add documents to dynamic knowledge base
self.add_documents_to_knowledge_base(file_path)
print(f"Successfully integrated GAIA file into dynamic knowledge base")
except Exception as e:
print(f"Failed to download/process file for task {task_id}: {e}")
# Enhanced context prompt with dynamic knowledge base awareness
context_prompt = f"""
GAIA Task ID: {task_id}
Question: {question}
{f'File processed and added to knowledge base: {file_path}' if file_path else 'No additional files'}
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
try:
ctx = Context(self.coordinator)
print("=== AGENT REASONING STEPS ===")
print(f"Dynamic knowledge base contains {len(self.dynamic_qe_manager.documents)} documents")
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
full_response = ""
async for event in handler.stream_events():
if isinstance(event, AgentStream):
print(event.delta, end="", flush=True)
full_response += event.delta
final_response = await handler
print("\n=== END REASONING ===")
# Extract the final formatted answer
final_answer = str(final_response).strip()
print(f"Final GAIA formatted answer: {final_answer}")
print(f"Knowledge base now contains {len(self.dynamic_qe_manager.documents)} documents")
return final_answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
return error_msg
def get_knowledge_base_stats(self):
"""Get statistics about the current knowledge base"""
return {
"total_documents": len(self.dynamic_qe_manager.documents),
"document_sources": [doc.metadata.get("source", "Unknown") for doc in self.dynamic_qe_manager.documents]
} |