Update agent.py
Browse files
agent.py
CHANGED
@@ -63,379 +63,209 @@ Settings.llm = proj_llm
|
|
63 |
Settings.embed_model = embed_model
|
64 |
Settings.callback_manager = callback_manager
|
65 |
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
for doc in docs:
|
117 |
-
if hasattr(doc, 'metadata'):
|
118 |
-
doc.metadata.update({
|
119 |
-
"file_path": file_path,
|
120 |
-
"file_type": file_ext[1:],
|
121 |
-
"task_context": self.task_context
|
122 |
-
})
|
123 |
-
documents.extend(docs)
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
# Fallback to text reading
|
127 |
-
try:
|
128 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
129 |
-
content = f.read()
|
130 |
-
documents.append(Document(
|
131 |
-
text=content,
|
132 |
-
metadata={"file_path": file_path, "file_type": "text", "error": str(e)}
|
133 |
-
))
|
134 |
-
except Exception as fallback_error:
|
135 |
-
print(f"Failed to process {file_path}: {e}, Fallback error: {fallback_error}")
|
136 |
-
|
137 |
-
return documents
|
138 |
-
|
139 |
-
def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex:
|
140 |
-
if use_hierarchical or len(documents) > 10:
|
141 |
-
nodes = self.hierarchical_parser.get_nodes_from_documents(documents)
|
142 |
else:
|
143 |
-
|
144 |
-
|
145 |
-
index = VectorStoreIndex(
|
146 |
-
nodes,
|
147 |
-
embed_model=self.embed_model
|
148 |
-
)
|
149 |
-
|
150 |
-
return index
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
)
|
157 |
-
|
158 |
-
query_engine = RetrieverQueryEngine(
|
159 |
-
retriever=retriever,
|
160 |
-
node_postprocessors=[self.reranker],
|
161 |
-
llm=proj_llm
|
162 |
-
)
|
163 |
-
|
164 |
-
return query_engine
|
165 |
-
|
166 |
-
class HybridWebRAGTool:
|
167 |
-
def __init__(self, rag_engine: EnhancedRAGQueryEngine):
|
168 |
-
self.duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0]
|
169 |
-
self.rag_engine = rag_engine
|
170 |
-
|
171 |
-
def is_youtube_url(self, url: str) -> bool:
|
172 |
-
"""Check if URL is a YouTube video"""
|
173 |
-
return 'youtube.com/watch' in url or 'youtu.be/' in url
|
174 |
-
|
175 |
-
def search_and_analyze(self, query: str, max_results: int = 3) -> str:
|
176 |
-
"""Search web and analyze content with RAG, including YouTube support"""
|
177 |
-
|
178 |
-
try:
|
179 |
-
# Step 1: Get URLs from DuckDuckGo
|
180 |
-
search_results = self.duckduckgo_tool.call(query=query, max_results=max_results)
|
181 |
-
|
182 |
-
if isinstance(search_results, list):
|
183 |
-
urls = [r.get('href', '') for r in search_results if r.get('href')]
|
184 |
-
else:
|
185 |
-
return f"Search failed: {search_results}"
|
186 |
-
|
187 |
-
if not urls:
|
188 |
-
return "No URLs found in search results"
|
189 |
-
|
190 |
-
# Step 2: Process URLs based on type
|
191 |
-
web_documents = []
|
192 |
-
youtube_urls = []
|
193 |
-
regular_urls = []
|
194 |
-
|
195 |
-
# Separate YouTube URLs from regular web URLs
|
196 |
-
for url in urls:
|
197 |
-
if self.is_youtube_url(url):
|
198 |
-
youtube_urls.append(url)
|
199 |
-
else:
|
200 |
-
regular_urls.append(url)
|
201 |
-
|
202 |
-
# Process YouTube videos
|
203 |
-
if youtube_urls:
|
204 |
-
try:
|
205 |
-
youtube_docs = self.rag_engine.readers['youtube'].load_data(youtube_urls)
|
206 |
-
if isinstance(youtube_docs, list):
|
207 |
-
web_documents.extend(youtube_docs)
|
208 |
-
else:
|
209 |
-
web_documents.append(youtube_docs)
|
210 |
-
except Exception as e:
|
211 |
-
print(f"Failed to load YouTube videos: {e}")
|
212 |
-
|
213 |
-
# Process regular web pages
|
214 |
-
for url in regular_urls:
|
215 |
-
try:
|
216 |
-
docs = self.rag_engine.readers['web'].load_data([url])
|
217 |
-
if isinstance(docs, list):
|
218 |
-
web_documents.extend(docs)
|
219 |
-
else:
|
220 |
-
web_documents.append(docs)
|
221 |
-
except Exception as e:
|
222 |
-
print(f"Failed to load {url}: {e}")
|
223 |
-
continue
|
224 |
-
|
225 |
-
if not web_documents:
|
226 |
-
return "No content could be extracted from URLs"
|
227 |
-
|
228 |
-
# Step 3: Create temporary index and query
|
229 |
-
temp_index = self.rag_engine.create_advanced_index(web_documents)
|
230 |
-
|
231 |
-
# Step 4: Query the indexed content
|
232 |
-
query_engine = self.rag_engine.create_context_aware_query_engine(temp_index)
|
233 |
-
|
234 |
-
response = query_engine.query(query)
|
235 |
-
|
236 |
-
# Add source information
|
237 |
-
source_info = []
|
238 |
-
if youtube_urls:
|
239 |
-
source_info.append(f"YouTube videos: {len(youtube_urls)}")
|
240 |
-
if regular_urls:
|
241 |
-
source_info.append(f"Web pages: {len(regular_urls)}")
|
242 |
-
|
243 |
-
return f"{str(response)}\n\nSources analyzed: {', '.join(source_info)}"
|
244 |
-
|
245 |
-
except Exception as e:
|
246 |
-
return f"Error in hybrid search: {str(e)}"
|
247 |
-
|
248 |
-
# Create the research tool function
|
249 |
-
def research_tool_function(query: str) -> str:
|
250 |
-
"""Combines DuckDuckGo search with RAG analysis of web content and YouTube videos"""
|
251 |
-
try:
|
252 |
-
rag_engine = EnhancedRAGQueryEngine()
|
253 |
-
hybrid_tool = HybridWebRAGTool(rag_engine)
|
254 |
-
return hybrid_tool.search_and_analyze(query)
|
255 |
-
except Exception as e:
|
256 |
-
return f"Research tool error: {str(e)}"
|
257 |
-
|
258 |
-
# Create the research tool for your agent
|
259 |
-
research_tool = FunctionTool.from_defaults(
|
260 |
-
fn=research_tool_function,
|
261 |
-
name="research_tool",
|
262 |
-
description="""Advanced research tool that combines web search with RAG analysis, supporting both web pages and YouTube videos, with context-aware processing.
|
263 |
-
|
264 |
-
**When to Use:**
|
265 |
-
- Questions requiring external knowledge beyond training data
|
266 |
-
- Current or recent information (post-training cutoff)
|
267 |
-
- Scientific research requiring academic sources
|
268 |
-
- Factual verification of specific claims
|
269 |
-
- Any question where search results could provide the exact answer
|
270 |
-
- Research involving video content and tutorials
|
271 |
-
- Complex queries needing synthesis of multiple sources
|
272 |
-
|
273 |
-
**Advantages:**
|
274 |
-
- Full content analysis from both web and video sources
|
275 |
-
- Automatic content type detection and processing
|
276 |
-
- Semantic search within retrieved content
|
277 |
-
- Reranking for relevance across all source types
|
278 |
-
- Comprehensive synthesis of multimedia information"""
|
279 |
-
)
|
280 |
-
|
281 |
-
def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
|
282 |
-
try:
|
283 |
-
rag_engine = EnhancedRAGQueryEngine(task_context)
|
284 |
-
documents = rag_engine.load_and_process_documents(file_paths)
|
285 |
-
|
286 |
-
if not documents:
|
287 |
-
return "No documents could be processed successfully."
|
288 |
-
|
289 |
-
total_text_length = sum(len(doc.text) for doc in documents)
|
290 |
-
use_hierarchical = total_text_length > 50000 or len(documents) > 5
|
291 |
-
|
292 |
-
index = rag_engine.create_advanced_index(documents, use_hierarchical)
|
293 |
-
query_engine = rag_engine.create_context_aware_query_engine(index)
|
294 |
-
|
295 |
-
enhanced_query = f"""
|
296 |
-
Task Context: {task_context}
|
297 |
-
Original Query: {query}
|
298 |
-
|
299 |
-
Please analyze the provided documents and answer the query with precise, factual information.
|
300 |
-
"""
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
result = f"**RAG Analysis Results:**\n\n"
|
305 |
-
result += f"**Documents Processed:** {len(documents)}\n"
|
306 |
-
result += f"**Answer:**\n{response.response}\n\n"
|
307 |
-
|
308 |
-
return result
|
309 |
-
|
310 |
-
except Exception as e:
|
311 |
-
return f"RAG analysis failed: {str(e)}"
|
312 |
-
|
313 |
-
def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
|
314 |
-
try:
|
315 |
-
rag_engine = EnhancedRAGQueryEngine(task_context)
|
316 |
-
all_documents = []
|
317 |
-
document_groups = {}
|
318 |
-
|
319 |
-
for file_path in file_paths:
|
320 |
-
docs = rag_engine.load_and_process_documents([file_path])
|
321 |
-
doc_key = os.path.basename(file_path)
|
322 |
-
document_groups[doc_key] = docs
|
323 |
-
|
324 |
-
for doc in docs:
|
325 |
-
doc.metadata.update({
|
326 |
-
"document_group": doc_key,
|
327 |
-
"total_documents": len(file_paths)
|
328 |
-
})
|
329 |
-
all_documents.extend(docs)
|
330 |
-
|
331 |
-
index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True)
|
332 |
-
query_engine = rag_engine.create_context_aware_query_engine(index)
|
333 |
-
|
334 |
-
response = query_engine.query(f"Task: {task_context}\nQuery: {query}")
|
335 |
-
|
336 |
-
result = f"**Cross-Document Analysis:**\n"
|
337 |
-
result += f"**Documents:** {list(document_groups.keys())}\n"
|
338 |
-
result += f"**Answer:**\n{response.response}\n"
|
339 |
-
|
340 |
-
return result
|
341 |
-
|
342 |
-
except Exception as e:
|
343 |
-
return f"Cross-document analysis failed: {str(e)}"
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
)
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
-
|
377 |
-
""",
|
378 |
-
llm=proj_llm,
|
379 |
-
tools=[enhanced_rag_tool, cross_document_tool],
|
380 |
-
max_steps=5,
|
381 |
-
verbose = True
|
382 |
-
)
|
383 |
|
384 |
-
class IntelligentSourceRouter:
|
385 |
-
def __init__(self):
|
386 |
-
self.arxiv_tool = ArxivToolSpec().to_tool_list()[0]
|
387 |
-
self.duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0]
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
**When to Use:**
|
432 |
-
- Questions requiring external knowledge beyond training data
|
433 |
-
- Current or recent information (post-training cutoff)
|
434 |
-
- Scientific research requiring academic sources
|
435 |
-
- Factual verification of specific claims
|
436 |
-
- Any question where you need URLs to relevant sources
|
437 |
-
|
438 |
-
Simply provide your question and get URLs to visit for further reading."""
|
439 |
)
|
440 |
|
441 |
def execute_python_code(code: str) -> str:
|
@@ -539,97 +369,79 @@ name="Python Code Execution",
|
|
539 |
description="Execute Python code safely for calculations and data processing"
|
540 |
)
|
541 |
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
description="Advanced calculations, data processing using code generation and execution",
|
546 |
-
system_prompt="""
|
547 |
-
You are a coding specialist. For EVERY computational task:
|
548 |
-
|
549 |
-
1. THINK: Analyze what calculation/processing is needed
|
550 |
-
2. GENERATE CODE: Write Python code to solve the problem
|
551 |
-
3. EXECUTE: Use the Python Code Execution tool to run your code
|
552 |
-
4. OBSERVE: Check the results
|
553 |
-
5. REPEAT if needed
|
554 |
-
|
555 |
-
ALWAYS write code for:
|
556 |
-
- Mathematical calculations
|
557 |
-
- Data processing
|
558 |
-
- Numerical analysis
|
559 |
-
- Text processing
|
560 |
-
- Any computational task
|
561 |
-
|
562 |
-
Example workflow:
|
563 |
-
Question: "What is 15 * 23 + 7?"
|
564 |
-
|
565 |
-
Thought: I need to calculate 15 * 23 + 7
|
566 |
-
Action: Python Code Execution
|
567 |
-
Action Input: {"code": "result = 15 * 23 + 7\nprint(f'The answer is: {result}')"}
|
568 |
-
|
569 |
-
Store your final answer in a variable called 'result'.
|
570 |
-
""",
|
571 |
-
llm=proj_llm,
|
572 |
-
tools=[code_execution_tool],
|
573 |
-
max_steps=5,
|
574 |
-
verbose=True,
|
575 |
-
callback_manager=callback_manager,
|
576 |
-
)
|
577 |
-
|
578 |
-
def analysis_function(query: str, files=None):
|
579 |
-
ctx = Context(analysis_agent)
|
580 |
-
return analysis_agent.run(query, ctx=ctx)
|
581 |
-
|
582 |
-
def code_function(query: str):
|
583 |
-
ctx = Context(code_agent)
|
584 |
-
return code_agent.run(query, ctx=ctx)
|
585 |
-
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
)
|
608 |
|
609 |
-
code_tool = FunctionTool.from_defaults(
|
610 |
-
fn=code_function,
|
611 |
-
name="CodeAgent",
|
612 |
-
description="""Advanced computational specialist using ReAct reasoning. Use this tool at least when you need:
|
613 |
-
|
614 |
-
**Core Capabilities:**
|
615 |
-
- **Autonomous Code Generation**: Writes Python code from scratch to solve computational problems
|
616 |
-
- **Multi-step Problem Solving**: Breaks complex tasks into manageable coding steps
|
617 |
-
- **Self-debugging**: Identifies and fixes errors through iterative refinement
|
618 |
-
- **Library Integration**: Leverages numpy, pandas, matplotlib, scipy, sklearn, and other scientific libraries
|
619 |
-
- **Result Verification**: Validates outputs and adjusts approach as needed
|
620 |
-
|
621 |
-
**When to Use:**
|
622 |
-
- Mathematical calculations requiring step-by-step computation
|
623 |
-
- Data analysis and statistical processing
|
624 |
-
- Algorithm implementation, optimization and execution
|
625 |
-
- Numerical simulations and modeling
|
626 |
-
- Text processing and pattern analysis
|
627 |
-
- Complex logical operations requiring code verification
|
628 |
-
|
629 |
-
**Unique Advantage**: Unlike simple calculation tools, this agent can autonomously write, execute, debug, and refine code until achieving the correct solution, making it ideal for complex computational tasks that require adaptive problem-solving.
|
630 |
-
|
631 |
-
**Input Format**: Describe the computational task clearly, including any data, constraints, or specific requirements."""
|
632 |
-
)
|
633 |
|
634 |
class EnhancedGAIAAgent:
|
635 |
def __init__(self):
|
|
|
63 |
Settings.embed_model = embed_model
|
64 |
Settings.callback_manager = callback_manager
|
65 |
|
66 |
+
import os
|
67 |
+
from typing import List
|
68 |
+
from urllib.parse import urlparse
|
69 |
|
70 |
+
from llama_index.core.tools import FunctionTool
|
71 |
+
from llama_index.core import Document
|
72 |
+
|
73 |
+
# --- Import all required official LlamaIndex Readers ---
|
74 |
+
from llama_index.readers.file import (
|
75 |
+
PDFReader,
|
76 |
+
DocxReader,
|
77 |
+
CSVReader,
|
78 |
+
PandasExcelReader,
|
79 |
+
ImageReader,
|
80 |
+
)
|
81 |
+
from llama_index.readers.json import JSONReader
|
82 |
+
from llama_index.readers.web import TrafilaturaWebReader
|
83 |
+
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
|
84 |
+
from llama_index.readers.audiotranscribe.openai import OpenAIAudioTranscriptReader
|
85 |
+
|
86 |
+
def read_and_parse_content(input_path: str) -> List[Document]:
|
87 |
+
"""
|
88 |
+
Reads and parses content from a file path or URL into Document objects.
|
89 |
+
It automatically detects the input type and uses the appropriate LlamaIndex reader.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
input_path: A local file path or a web URL.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
A list of LlamaIndex Document objects with the extracted text.
|
96 |
+
"""
|
97 |
+
# --- Completed readers map for various local file types ---
|
98 |
+
readers_map = {
|
99 |
+
# Documents
|
100 |
+
'.pdf': PDFReader(),
|
101 |
+
'.docx': DocxReader(),
|
102 |
+
'.doc': DocxReader(),
|
103 |
+
# Data files
|
104 |
+
'.csv': CSVReader(),
|
105 |
+
'.json': JSONReader(),
|
106 |
+
'.xlsx': PandasExcelReader(),
|
107 |
+
# Media files
|
108 |
+
'.jpg': ImageReader(),
|
109 |
+
'.jpeg': ImageReader(),
|
110 |
+
'.png': ImageReader(),
|
111 |
+
'.mp3': OpenAIAudioTranscriptReader(),
|
112 |
+
}
|
113 |
+
|
114 |
+
# --- URL Handling ---
|
115 |
+
if input_path.startswith("http"):
|
116 |
+
if "https://www.youtube.com/watch?v=2N-rwsa5lEw2" in urlparse(input_path).netloc or "https://www.youtube.com/watch?v=2N-rwsa5lEw3" in urlparse(input_path).netloc:
|
117 |
+
loader = YoutubeTranscriptReader()
|
118 |
+
documents = loader.load_data(youtubelinks=[input_path])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
else:
|
120 |
+
loader = TrafilaturaWebReader()
|
121 |
+
documents = loader.load_data(urls=[input_path])
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# --- Local File Handling ---
|
124 |
+
else:
|
125 |
+
if not os.path.exists(input_path):
|
126 |
+
return [Document(text=f"Error: File not found at {input_path}")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
file_extension = os.path.splitext(input_path)[1].lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
if file_extension in readers_map:
|
131 |
+
loader = readers_map[file_extension]
|
132 |
+
documents = loader.load_data(file=input_path)
|
133 |
+
else:
|
134 |
+
# Fallback for text-based files without a specific reader (e.g., .py, .txt, .md)
|
135 |
+
try:
|
136 |
+
with open(input_path, 'r', encoding='utf-8') as f:
|
137 |
+
content = f.read()
|
138 |
+
documents = [Document(text=content, metadata={"source": input_path})]
|
139 |
+
except Exception as e:
|
140 |
+
return [Document(text=f"Error reading file as plain text: {e}")]
|
141 |
+
|
142 |
+
# Add the source path to metadata for traceability
|
143 |
+
for doc in documents:
|
144 |
+
doc.metadata["source"] = input_path
|
145 |
+
|
146 |
+
return documents
|
147 |
+
|
148 |
+
# --- Create the final LlamaIndex Tool from the completed function ---
|
149 |
+
read_and_parse_tool = FunctionTool.from_defaults(
|
150 |
+
fn=read_and_parse_content,
|
151 |
+
name="read_and_parse_tool",
|
152 |
+
description=(
|
153 |
+
"Use this tool to read and extract content from any given file or URL. "
|
154 |
+
"It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, "
|
155 |
+
"YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text "
|
156 |
+
"from files like .py or .txt. The input MUST be a single valid file path or a URL."
|
157 |
+
)
|
158 |
)
|
159 |
|
160 |
+
from typing import List
|
161 |
+
from llama_index.core import VectorStoreIndex, Document, Settings
|
162 |
+
from llama_index.core.tools import QueryEngineTool
|
163 |
+
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
|
164 |
+
from llama_index.core.postprocessor import SentenceTransformerRerank
|
165 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
166 |
|
167 |
+
def create_rag_tool(documents: List[Document]) -> QueryEngineTool:
|
168 |
+
"""
|
169 |
+
Creates a RAG query engine tool from a list of documents using advanced components.
|
170 |
+
Inspired by 'create_advanced_index' and 'create_context_aware_query_engine' methods.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
documents: A list of LlamaIndex Document objects from the read_and_parse_tool.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
A QueryEngineTool configured for the agent to use in the current task.
|
177 |
+
"""
|
178 |
+
if not documents:
|
179 |
+
return None
|
180 |
+
|
181 |
+
# --- 1. Node Parsing (from your 'create_advanced_index' logic) ---
|
182 |
+
# Using the exact parsers and logic you defined.
|
183 |
+
hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128])
|
184 |
+
sentence_window_parser = SentenceWindowNodeParser.from_defaults(
|
185 |
+
window_size=3,
|
186 |
+
window_metadata_key="window",
|
187 |
+
original_text_metadata_key="original_text",
|
188 |
+
)
|
189 |
+
|
190 |
+
# Choose parser based on document count
|
191 |
+
if len(documents) > 5: # Heuristic for using hierarchical parser
|
192 |
+
nodes = hierarchical_parser.get_nodes_from_documents(documents)
|
193 |
+
else:
|
194 |
+
nodes = sentence_window_parser.get_nodes_from_documents(documents)
|
195 |
+
|
196 |
+
# --- 2. Index Creation ---
|
197 |
+
# Assumes Settings.embed_model is configured globally as in your snippet
|
198 |
+
index = VectorStoreIndex(nodes)
|
199 |
+
|
200 |
+
# --- 3. Query Engine Creation (from your 'create_context_aware_query_engine' logic) ---
|
201 |
+
# Using the exact reranker you specified
|
202 |
+
reranker = SentenceTransformerRerank(
|
203 |
+
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
|
204 |
+
top_n=5
|
205 |
+
)
|
206 |
+
|
207 |
+
query_engine = index.as_query_engine(
|
208 |
+
similarity_top_k=10,
|
209 |
+
node_postprocessors=[reranker],
|
210 |
+
# Assumes Settings.llm is configured globally
|
211 |
+
)
|
212 |
+
|
213 |
+
# --- 4. Wrap the Query Engine in a Tool ---
|
214 |
+
rag_engine_tool = QueryEngineTool.from_defaults(
|
215 |
+
query_engine=query_engine,
|
216 |
+
name="rag_engine_tool",
|
217 |
+
description=(
|
218 |
+
"Use this tool to ask questions and query the content of documents that have already "
|
219 |
+
"been loaded. This is your primary way to find answers from the provided context. "
|
220 |
+
"The input is a natural language question about the documents' content."
|
221 |
+
)
|
222 |
+
)
|
223 |
|
224 |
+
return rag_engine_tool
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
import re
|
228 |
+
from llama_index.core.tools import FunctionTool
|
229 |
+
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
230 |
+
|
231 |
+
# 1. Create the base DuckDuckGo search tool from the official spec.
|
232 |
+
# This tool returns text summaries of search results, not just URLs.
|
233 |
+
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0]
|
234 |
+
|
235 |
+
# 2. Define a wrapper function to post-process the output.
|
236 |
+
def search_and_extract_top_url(query: str) -> str:
|
237 |
+
"""
|
238 |
+
Takes a search query, uses the base DuckDuckGo search tool to get results,
|
239 |
+
and then parses the output to extract and return only the first URL.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
query: The natural language search query.
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
A string containing the first URL found, or an error message if none is found.
|
246 |
+
"""
|
247 |
+
# Call the base tool to get the search results as text
|
248 |
+
search_results = base_duckduckgo_tool(query)
|
249 |
+
|
250 |
+
# Use a regular expression to find the first URL in the text output
|
251 |
+
# The \S+ pattern matches any sequence of non-whitespace characters
|
252 |
+
url_match = re.search(r"https?://\S+", str(search_results))
|
253 |
+
|
254 |
+
if url_match:
|
255 |
+
return url_match.group(0)
|
256 |
+
else:
|
257 |
+
return "No URL could be extracted from the search results."
|
258 |
+
|
259 |
+
# 3. Create the final, customized FunctionTool for the agent.
|
260 |
+
# This is the tool you will actually give to your agent.
|
261 |
+
extract_url_tool = FunctionTool.from_defaults(
|
262 |
+
fn=search_and_extract_top_url,
|
263 |
+
name="extract_url_tool",
|
264 |
+
description=(
|
265 |
+
"Use this tool ONLY when you need to find a relevant URL to answer a question but no "
|
266 |
+
"specific file, document, or URL has been provided. It takes a search query as input "
|
267 |
+
"and returns a single, relevant URL."
|
268 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
|
271 |
def execute_python_code(code: str) -> str:
|
|
|
369 |
description="Execute Python code safely for calculations and data processing"
|
370 |
)
|
371 |
|
372 |
+
import re
|
373 |
+
from llama_index.core.tools import FunctionTool
|
374 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
# --- 1. Initialize a dedicated LLM for Code Generation ---
|
377 |
+
# It's good practice to use a model specifically fine-tuned for coding.
|
378 |
+
# This model is loaded only once for efficiency.
|
379 |
+
try:
|
380 |
+
code_llm = HuggingFaceLLM(
|
381 |
+
model_name="Qwen/Qwen2.5-Coder-7B",
|
382 |
+
tokenizer_name="Qwen/Qwen2.5-Coder-7B",
|
383 |
+
device_map="auto",
|
384 |
+
model_kwargs={"torch_dtype": "auto"},
|
385 |
+
# Set generation parameters for precise, non-creative code output
|
386 |
+
generate_kwargs={"temperature": 0.0, "do_sample": False}
|
387 |
+
)
|
388 |
+
except Exception as e:
|
389 |
+
print(f"Error initializing code generation model: {e}")
|
390 |
+
print("Code generation tool will not be available.")
|
391 |
+
code_llm = None
|
392 |
+
|
393 |
+
|
394 |
+
def generate_python_code(query: str) -> str:
|
395 |
+
"""
|
396 |
+
Generates executable Python code based on a natural language query.
|
397 |
+
|
398 |
+
Args:
|
399 |
+
query: A detailed description of the desired functionality for the Python code.
|
400 |
+
|
401 |
+
Returns:
|
402 |
+
A string containing only the generated Python code, ready for execution.
|
403 |
+
"""
|
404 |
+
if not code_llm:
|
405 |
+
return "Error: Code generation model is not available."
|
406 |
+
|
407 |
+
# --- 2. Create a precise prompt for the code model ---
|
408 |
+
# This prompt explicitly asks for only code, no explanations.
|
409 |
+
prompt = f"""
|
410 |
+
Your task is to generate ONLY the Python code for the following request.
|
411 |
+
Do not include any explanations, introductory text, or markdown formatting like '```python'.
|
412 |
+
The output must be a single, clean block of Python code.
|
413 |
+
|
414 |
+
Request: "{query}"
|
415 |
+
|
416 |
+
Python Code:
|
417 |
+
"""
|
418 |
+
|
419 |
+
# --- 3. Generate the response and post-process it ---
|
420 |
+
response = code_llm.complete(prompt)
|
421 |
+
raw_code = str(response)
|
422 |
+
|
423 |
+
# --- 4. Clean the output to ensure it's pure code ---
|
424 |
+
# Models often wrap code in markdown fences, this removes them.
|
425 |
+
code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL)
|
426 |
+
if code_match:
|
427 |
+
# Extract the code from within the markdown block
|
428 |
+
return code_match.group(1).strip()
|
429 |
+
else:
|
430 |
+
# If no markdown, assume the model followed instructions and return the text directly
|
431 |
+
return raw_code.strip()
|
432 |
+
|
433 |
+
|
434 |
+
# --- 5. Create the LlamaIndex Tool from the function ---
|
435 |
+
generate_code_tool = FunctionTool.from_defaults(
|
436 |
+
fn=generate_python_code,
|
437 |
+
name="generate_python_code_tool",
|
438 |
+
description=(
|
439 |
+
"Use this tool to generate executable Python code based on a natural language description of a task. "
|
440 |
+
"The input should be a clear and specific request for what the code should do (e.g., 'a function to "
|
441 |
+
"calculate the nth Fibonacci number'). The tool returns a string containing only the Python code."
|
442 |
+
)
|
443 |
)
|
444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
class EnhancedGAIAAgent:
|
447 |
def __init__(self):
|