File size: 25,450 Bytes
fd66990 6395478 7e8c870 fd66990 e108f99 fd66990 b3564a4 fd66990 e108f99 fd66990 87d5798 4bcc56d fd66990 dc3e5a5 fd66990 4e1bcbc bf7c38b ad260e4 65390be 1d635fd 65390be 1d635fd 3ae963b 1d635fd 3860a34 87d5798 b85f2cf 610ce11 e6723aa e108f99 fa9bd8d c4be662 e108f99 bd6923a 65713d0 bd6923a bd53fcc bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 8687bfb bd6923a 8687bfb bd6923a 8687bfb bd6923a 8687bfb bd6923a 6395478 bd6923a 6395478 bd6923a 8687bfb bd6923a bf7c38b ca76aee a0ecced ca76aee a0ecced 65713d0 a0ecced 8687bfb a0ecced 8687bfb a0ecced 65713d0 bd6923a 9980db3 6395478 bd6923a 9980db3 6395478 bd6923a 6395478 bd6923a 9980db3 bd6923a d7040ab bd6923a 6395478 ee3fdf5 6d995e5 ee3fdf5 f3bb80d ee3fdf5 b038c33 ee3fdf5 f6a28d0 b038c33 bd6923a 30f5a8f bd6923a 3860a34 bd6923a ee3fdf5 bd6923a 6d995e5 bd6923a 2112ee7 ee3fdf5 c0ddcb5 ee3fdf5 c0ddcb5 ee3fdf5 c0ddcb5 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 ee3fdf5 fd66990 267684e a0ecced 54d2e6f fd66990 65713d0 fd66990 ee3fdf5 fd66990 c0ddcb5 5e30500 0e0ac87 fd66990 0e0ac87 fd66990 0e0ac87 fd66990 6c51afa fd66990 6c51afa fd66990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Standard library imports
import logging
import os
import re
from typing import Dict, Any, List
from urllib.parse import urlparse
# Third-party imports
import requests
import wandb
from transformers import AutoModelForCausalLM, AutoTokenizer
# LlamaIndex core imports
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.core.agent.workflow import FunctionAgent, ReActAgent, AgentStream
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.tools import FunctionTool
from llama_index.core.workflow import Context
# LlamaIndex specialized imports
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.readers.assemblyai import AssemblyAIAudioTranscriptReader
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader, PandasExcelReader
from llama_index.readers.json import JSONReader
from llama_index.readers.web import TrafilaturaWebReader
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
# --- Import all required official LlamaIndex Readers ---
from llama_index.readers.file import (
PDFReader,
DocxReader,
CSVReader,
PandasExcelReader,
ImageReader,
)
from typing import List, Union
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.core.tools import QueryEngineTool
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.query_pipeline import QueryPipeline
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
# Comprehensive callback manager
callback_manager = CallbackManager([
wandb_callback, # For W&B tracking
llama_debug # For general debugging
])
logging.basicConfig(level=logging.INFO)
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
model_id = "Qwen/Qwen2.5-7B-Instruct"
proj_llm = HuggingFaceLLM(
model_name=model_id,
tokenizer_name=model_id,
device_map="auto", # will use GPU if available
model_kwargs={"torch_dtype": "auto"},
generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused
)
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([wandb_callback, llama_debug])
Settings.llm = proj_llm
Settings.embed_model = embed_model
Settings.callback_manager = callback_manager
def read_and_parse_content(input_path: str) -> List[Document]:
"""
Reads and parses content from a file path or URL into Document objects.
It automatically detects the input type and uses the appropriate LlamaIndex reader.
Args:
input_path: A local file path or a web URL.
Returns:
A list of LlamaIndex Document objects with the extracted text.
"""
# --- Completed readers map for various local file types ---
readers_map = {
# Documents
'.pdf': PDFReader(),
'.docx': DocxReader(),
'.doc': DocxReader(),
# Data files
'.csv': CSVReader(),
'.json': JSONReader(),
'.xlsx': PandasExcelReader(),
# Media files
'.jpg': ImageReader(),
'.jpeg': ImageReader(),
'.png': ImageReader(),
'.mp3': AssemblyAIAudioTranscriptReader(input_path),
}
# --- URL Handling ---
if input_path.startswith("http"):
if "youtube" in urlparse(input_path):
loader = YoutubeTranscriptReader()
documents = loader.load_data(youtubelinks=[input_path])
else:
loader = TrafilaturaWebReader()
documents = loader.load_data(urls=[input_path])
# --- Local File Handling ---
else:
if not os.path.exists(input_path):
return [Document(text=f"Error: File not found at {input_path}")]
file_extension = os.path.splitext(input_path)[1].lower()
if file_extension in readers_map:
loader = readers_map[file_extension]
documents = loader.load_data(file=input_path)
else:
# Fallback for text-based files without a specific reader (e.g., .py, .txt, .md)
try:
with open(input_path, 'r', encoding='utf-8') as f:
content = f.read()
documents = [Document(text=content, metadata={"source": input_path})]
except Exception as e:
return [Document(text=f"Error reading file as plain text: {e}")]
# Add the source path to metadata for traceability
for doc in documents:
doc.metadata["source"] = input_path
return documents
# --- Create the final LlamaIndex Tool from the completed function ---
read_and_parse_tool = FunctionTool.from_defaults(
fn=read_and_parse_content,
name="read_and_parse_tool",
description=(
"Use this tool to read and extract content from any given file or URL. "
"It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, "
"YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text "
"from files like .py or .txt. The input MUST be a single valid file path or a URL."
)
)
def create_rag_tool_fn(documents: List[Document], query: str = None) -> Union[QueryEngineTool, str]:
"""
Creates a RAG query engine tool from documents with advanced indexing and querying capabilities.
This function implements a sophisticated RAG pipeline using hierarchical or sentence-window parsing
depending on document count, vector indexing, and reranking for optimal information retrieval.
Args:
documents (List[Document]): A list of LlamaIndex Document objects from read_and_parse_tool.
Must not be empty to create a valid RAG engine.
query (str, optional): If provided, immediately queries the created RAG engine and returns
the answer as a string. If None, returns the QueryEngineTool for later use.
Defaults to None.
Returns:
Union[QueryEngineTool, str]:
- QueryEngineTool: When query=None, returns a tool configured for agent use with
advanced reranking and similarity search capabilities.
- str: When query is provided, returns the direct answer from the RAG engine.
- None: When documents list is empty.
Examples:
Create a RAG tool for later use:
>>> rag_tool = create_rag_tool_fn(documents)
Get immediate answer from documents:
>>> answer = create_rag_tool_fn(documents, query="What is the main topic?")
"""
if not documents:
return None
# --- 1. Node Parsing (from your 'create_advanced_index' logic) ---
# Using the exact parsers and logic you defined.
hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128])
sentence_window_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
# Choose parser based on document count
if len(documents) > 5: # Heuristic for using hierarchical parser
nodes = hierarchical_parser.get_nodes_from_documents(documents)
else:
nodes = sentence_window_parser.get_nodes_from_documents(documents)
# --- 2. Index Creation ---
# Assumes Settings.embed_model is configured globally as in your snippet
index = VectorStoreIndex(nodes)
# --- 3. Query Engine Creation (from your 'create_context_aware_query_engine' logic) ---
# Using the exact reranker you specified
reranker = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
top_n=5
)
query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[reranker],
# Assumes Settings.llm is configured globally
)
# --- 4. Wrap the Query Engine in a Tool ---
rag_engine_tool = QueryEngineTool.from_defaults(
query_engine=query_engine,
name="rag_engine_tool",
description=(
"Use this tool to ask questions and query the content of documents that have already "
"been loaded. This is your primary way to find answers from the provided context. "
"The input is a natural language question about the documents' content."
)
)
if query :
result = rag_engine_tool.query_engine.query(query)
return str(result)
return rag_engine_tool
def information_retrieval_fn (paths : List[str], query : str = None) -> Union[QueryEngineTool, str]:
docs = []
for path in paths :
docs.append(read_and_parse_content(path))
return create_rag_tool_fn(docs,query)
information_retrieval_tool = FunctionTool.from_defaults(
fn=information_retrieval_fn,
name="information_retrieval_tool",
description=(
"This is the BEST and OPTIMAL tool to query information from documents parsed from URLs or files. "
"Use this tool to build a Retrieval Augmented Generation (RAG) engine from documents AND optionally query it immediately. "
"Input: documents (list of documents) and optional query parameter. "
"If no query is provided: creates and returns a RAG query engine tool for later use. "
"If query is provided: creates the RAG engine AND immediately returns the answer to your question. "
"ALWAYS use this tool when you need to retrieve specific information from documents obtained via URLs or file. "
"This dual-mode tool enables both RAG engine creation and direct question-answering in one step, making it the most efficient approach for document-based information retrieval."
)
)
# 1. Create the base DuckDuckGo search tool from the official spec.
# This tool returns text summaries of search results, not just URLs.
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[1]
# 2. Define a wrapper function to post-process the output.
def search_and_extract_top_url(query: str) -> str:
"""
Takes a search query, uses the base DuckDuckGo search tool to get results,
and then parses the output to extract and return only the first URL.
Args:
query: The natural language search query.
Returns:
A string containing the first URL found, or an error message if none is found.
"""
# Call the base tool to get the search results as text
search_results = base_duckduckgo_tool(query, max_results = 1)
print(search_results)
# Use a regular expression to find the first URL in the text output
# The \S+ pattern matches any sequence of non-whitespace characters
url_match = re.search(r"https?://\S+", str(search_results))
if url_match:
return url_match.group(0)[:-2]
else:
return "No URL could be extracted from the search results."
# 3. Create the final, customized FunctionTool for the agent.
# This is the tool you will actually give to your agent.
extract_url_tool = FunctionTool.from_defaults(
fn=search_and_extract_top_url,
name="extract_url_tool",
description=(
"Use this tool when you need to find a relevant URL to answer a question. It takes a search query as input and returns a single, relevant URL."
)
)
safe_globals = {
"__builtins__": {
"len": len, "str": str, "int": int, "float": float,
"list": list, "dict": dict, "sum": sum, "max": max, "min": min,
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate,
"range": range, "zip": zip, "map": map, "filter": filter,
"any": any, "all": all, "type": type, "isinstance": isinstance,
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple
},
# Core Python modules
"math": __import__("math"),
"datetime": __import__("datetime"),
"re": __import__("re"),
"os": __import__("os"),
"sys": __import__("sys"),
"json": __import__("json"),
"csv": __import__("csv"),
"random": __import__("random"),
"itertools": __import__("itertools"),
"collections": __import__("collections"),
"functools": __import__("functools"),
# Data Science and Numerical Computing
"numpy": __import__("numpy"),
"np": __import__("numpy"),
"pandas": __import__("pandas"),
"pd": __import__("pandas"),
"scipy": __import__("scipy"),
# Visualization
"matplotlib": __import__("matplotlib"),
"plt": __import__("matplotlib.pyplot"),
"seaborn": __import__("seaborn"),
"sns": __import__("seaborn"),
"plotly": __import__("plotly"),
# Machine Learning
"sklearn": __import__("sklearn"),
"xgboost": __import__("xgboost"),
"lightgbm": __import__("lightgbm"),
# Statistics
"statistics": __import__("statistics"),
"statsmodels": __import__("statsmodels"),
# Image Processing
"PIL": __import__("PIL"),
"cv2": __import__("cv2"),
"skimage": __import__("skimage"),
# Time Series
"pytz": __import__("pytz"),
# Utilities
"tqdm": __import__("tqdm"),
"pickle": __import__("pickle"),
"gzip": __import__("gzip"),
"base64": __import__("base64"),
"hashlib": __import__("hashlib"),
# Scientific Computing
"sympy": __import__("sympy"),
# llama-index
"llama-index" : __import__("llama_index")
}
def execute_python_code(code: str) -> str:
try:
exec_locals = {}
exec(code, safe_globals, exec_locals)
if 'result' in exec_locals:
return str(exec_locals['result'])
else:
return "Code executed successfully"
except Exception as e:
return f"Code execution failed: {str(e)}"
code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Execute Python code safely for calculations and data processing"
)
import re
from llama_index.core.tools import FunctionTool
from llama_index.llms.huggingface import HuggingFaceLLM
# --- 1. Initialize a dedicated LLM for Code Generation ---
# It's good practice to use a model specifically fine-tuned for coding.
# This model is loaded only once for efficiency.
code_llm = HuggingFaceLLM(
model_name="Qwen/Qwen2.5-Coder-3B",
tokenizer_name="Qwen/Qwen2.5-Coder-3B",
device_map="auto",
model_kwargs={"torch_dtype": "auto"},
# Set generation parameters for precise, non-creative code output
generate_kwargs={"temperature": 0.0, "do_sample": False}
)
def generate_python_code(query: str) -> str:
"""
Generates executable Python code based on a natural language query.
Args:
query: A detailed description of the desired functionality for the Python code.
Returns:
A string containing only the generated Python code, ready for execution.
"""
if not code_llm:
return "Error: Code generation model is not available."
# --- 2. Create a precise prompt for the code model ---
# This prompt explicitly asks for only code, no explanations.
prompt = f"""
Your task is to generate ONLY the Python code for the following request.
Do not include any explanations, introductory text, or markdown formatting like '```python'.
The output must be a single, clean block of Python code.
IMPORTANT LIMITATIONS:
Your code will be executed in a restricted environment with limited functions and modules.
{str(safe_globals)}
Only use the functions and modules listed above. Do not use imports or other built-in functions.
Request: "{query}"
Python Code:
"""
# --- 3. Generate the response and post-process it ---
response = code_llm.complete(prompt)
raw_code = str(response)
# --- 4. Clean the output to ensure it's pure code ---
# Models often wrap code in markdown fences, this removes them.
code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL)
if code_match:
# Extract the code from within the markdown block
return code_match.group(1).strip()
else:
# If no markdown, assume the model followed instructions and return the text directly
return raw_code.strip()
# --- 5. Create the LlamaIndex Tool from the function ---
generate_code_tool = FunctionTool.from_defaults(
fn=generate_python_code,
name="generate_python_code_tool",
description=(
"Use this tool to generate executable Python code ONLY for mathematical calculations and problem solving. "
"This tool is specifically designed for numerical computations, statistical analysis, algebraic operations, "
"mathematical modeling, and scientific calculations."
"DO NOT use this tool for document processing, text manipulation, or data parsing - use appropriate specialized tools instead."
"The tool returns a string containing only the Python code for mathematical operations."
)
)
def clean_response(response: str) -> str:
"""Clean response by removing common prefixes"""
response_clean = response.strip()
prefixes_to_remove = [
"FINAL ANSWER:", "Answer:", "The answer is:",
"Based on my analysis,", "After reviewing,",
"The result is:", "Final result:", "According to",
"In conclusion,", "Therefore,", "Thus,"
]
for prefix in prefixes_to_remove:
if response_clean.startswith(prefix):
response_clean = response_clean[len(prefix):].strip()
return response_clean
def llm_reformat(response: str, question: str) -> str:
"""Use LLM to reformat the response according to GAIA requirements"""
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
GAIA Format Rules:
- ONLY the precise answer, no explanations
- No prefixes like "Answer:", "The result is:", etc.
- For numbers: just the number (e.g., "156", "3.14e+8")
- For names: just the name (e.g., "Martinez", "Sarah")
- For lists: comma-separated (e.g., "C++, Java, Python")
- For country codes: just the code (e.g., "FRA", "US")
- For yes/no: just "Yes" or "No"
Examples:
Question: "How many papers were published?"
Response: "The analysis shows 156 papers were published in total."
Answer: 156
Question: "What is the last name of the developer?"
Response: "The developer mentioned is Dr. Sarah Martinez from the AI team."
Answer: Martinez
Question: "List programming languages, alphabetized:"
Response: "The languages mentioned are Python, Java, and C++. Alphabetized: C++, Java, Python"
Answer: C++, Java, Python
Now extract the exact answer:
Question: {question}
Response: {response}
Answer:"""
try:
# Use the global LLM instance
formatting_response = proj_llm.complete(format_prompt)
answer = str(formatting_response).strip()
# Extract just the answer after "Answer:"
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
except Exception as e:
print(f"LLM reformatting failed: {e}")
return response
def final_answer_tool(agent_response: str, question: str) -> str:
"""
Simplified final answer tool using only LLM reformatting.
Args:
agent_response: The raw response from agent reasoning
question: The original question for context
Returns:
Exact answer in GAIA format
"""
# Step 1: Clean the response
cleaned_response = clean_response(agent_response)
# Step 2: Use LLM reformatting
formatted_answer = llm_reformat(cleaned_response, question)
print(f"Original response cleaned: {cleaned_response[:100]}...")
print(f"LLM formatted answer: {formatted_answer}")
return formatted_answer
# Create the simplified final answer tool
final_answer_function_tool = FunctionTool.from_defaults(
fn=final_answer_tool,
name="final_answer_tool",
description=(
"Use this tool to format the final answer according to GAIA requirements. "
"Input the agent's response and the original question to get properly formatted output."
)
)
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent...")
# Vérification du token HuggingFace
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
print("Warning: HUGGINGFACEHUB_API_TOKEN not found, some features may not work")
# Initialize only the tools that are actually defined in the file
self.available_tools = [
extract_url_tool,
read_and_parse_tool,
information_retrieval_tool,
code_execution_tool,
generate_code_tool,
]
# Create main coordinator using only defined tools
self.coordinator = ReActAgent(
name="GAIACoordinator",
system_prompt="""
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
""",
llm=proj_llm,
tools=self.available_tools,
max_steps=15,
verbose=True,
callback_manager=callback_manager,
)
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
"""Download file associated with task_id"""
try:
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
response.raise_for_status()
filename = f"task_{task_id}_file"
with open(filename, 'wb') as f:
f.write(response.content)
return filename
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
return None
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
"""
Solve GAIA question with enhanced validation and reformatting
"""
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
# Try to download file if task_id provided
file_path = None
if task_id:
try:
file_path = self.download_gaia_file(task_id)
if file_path:
documents = read_and_parse_content(file_path)
except Exception as e:
print(f"Failed to download/process file for task {task_id}: {e}")
# Prepare context prompt
context_prompt = f"""
GAIA Task ID: {task_id}
Question: {question}
{f'File available: {file_path}' if file_path else 'No additional files'}
"""
try:
ctx = Context(self.coordinator)
print("=== AGENT REASONING STEPS ===")
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
full_response = ""
async for event in handler.stream_events():
if isinstance(event, AgentStream):
print(event.delta, end="", flush=True)
full_response += event.delta
final_response = await handler
print("\n=== END REASONING ===")
# Extract the final formatted answer
final_answer = str(final_response).strip()
print(f"Final GAIA formatted answer: {final_answer}")
return final_answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
return error_msg |