File size: 24,263 Bytes
6395478 7e8c870 1d035ba 7e8c870 e108f99 b3564a4 370954a e108f99 ad260e4 87d5798 5e30500 3ae963b bac751d afecb73 bf7c38b ad260e4 65390be 1d635fd 65390be 1d635fd 3ae963b 1d635fd 95e0d33 87d5798 b85f2cf 610ce11 e6723aa e108f99 fa9bd8d c4be662 e108f99 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a bf7c38b bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 bd6923a 6395478 b038c33 797be04 f6a28d0 b038c33 bd6923a 30f5a8f bd6923a 2112ee7 6395478 77eaebf 6395478 77eaebf 1d635fd 77eaebf 6f11d78 6395478 77eaebf 6f11d78 6395478 0e0ac87 6f11d78 6395478 0e0ac87 6f11d78 0e0ac87 6f11d78 bf7c38b 6f11d78 bf7c38b 6f11d78 610ce11 bf7c38b 6f11d78 1d635fd 6f11d78 6395478 6c51afa fa0097a c0ddcb5 5e30500 c0ddcb5 5e30500 adface3 0e0ac87 6c51afa 0e0ac87 bf7c38b 0e0ac87 6c51afa 0e0ac87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader
import os
from typing import List, Dict, Any
from llama_index.tools.arxiv import ArxivToolSpec
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
import re
from llama_index.core.agent.workflow import ReActAgent
import wandb
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler
from llama_index.core import Settings
from transformers import AutoModelForCausalLM, AutoTokenizer
from llama_index.llms.huggingface import HuggingFaceLLM
import requests
import logging
from llama_index.core.workflow import Context
from llama_index.core.agent.workflow import AgentStream
from llama_index.readers_web import TrafilaturaWebReader
from llama_index_readers_youtube_transcript import YoutubeTranscriptReader
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
# Comprehensive callback manager
callback_manager = CallbackManager([
wandb_callback, # For W&B tracking
llama_debug # For general debugging
])
logging.basicConfig(level=logging.INFO)
logging.getLogger("llama_index.core.agent").setLevel(logging.DEBUG)
logging.getLogger("llama_index.llms").setLevel(logging.DEBUG)
model_id = "Qwen/Qwen2.5-7B-Instruct"
proj_llm = HuggingFaceLLM(
model_name=model_id,
tokenizer_name=model_id,
device_map="auto", # will use GPU if available
model_kwargs={"torch_dtype": "auto"},
generate_kwargs={"temperature": 0.1, "top_p": 0.3} # More focused
)
embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
wandb.init(project="gaia-llamaindex-agents") # Choisis ton nom de projet
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([wandb_callback, llama_debug])
Settings.llm = proj_llm
Settings.embed_model = embed_model
Settings.callback_manager = callback_manager
import os
from typing import List
from urllib.parse import urlparse
from llama_index.core.tools import FunctionTool
from llama_index.core import Document
# --- Import all required official LlamaIndex Readers ---
from llama_index.readers.file import (
PDFReader,
DocxReader,
CSVReader,
PandasExcelReader,
ImageReader,
)
from llama_index.readers.json import JSONReader
from llama_index.readers.web import TrafilaturaWebReader
from llama_index.readers.youtube_transcript import YoutubeTranscriptReader
from llama_index.readers.audiotranscribe.openai import OpenAIAudioTranscriptReader
def read_and_parse_content(input_path: str) -> List[Document]:
"""
Reads and parses content from a file path or URL into Document objects.
It automatically detects the input type and uses the appropriate LlamaIndex reader.
Args:
input_path: A local file path or a web URL.
Returns:
A list of LlamaIndex Document objects with the extracted text.
"""
# --- Completed readers map for various local file types ---
readers_map = {
# Documents
'.pdf': PDFReader(),
'.docx': DocxReader(),
'.doc': DocxReader(),
# Data files
'.csv': CSVReader(),
'.json': JSONReader(),
'.xlsx': PandasExcelReader(),
# Media files
'.jpg': ImageReader(),
'.jpeg': ImageReader(),
'.png': ImageReader(),
'.mp3': OpenAIAudioTranscriptReader(),
}
# --- URL Handling ---
if input_path.startswith("http"):
if "https://www.youtube.com/watch?v=2N-rwsa5lEw2" in urlparse(input_path).netloc or "https://www.youtube.com/watch?v=2N-rwsa5lEw3" in urlparse(input_path).netloc:
loader = YoutubeTranscriptReader()
documents = loader.load_data(youtubelinks=[input_path])
else:
loader = TrafilaturaWebReader()
documents = loader.load_data(urls=[input_path])
# --- Local File Handling ---
else:
if not os.path.exists(input_path):
return [Document(text=f"Error: File not found at {input_path}")]
file_extension = os.path.splitext(input_path)[1].lower()
if file_extension in readers_map:
loader = readers_map[file_extension]
documents = loader.load_data(file=input_path)
else:
# Fallback for text-based files without a specific reader (e.g., .py, .txt, .md)
try:
with open(input_path, 'r', encoding='utf-8') as f:
content = f.read()
documents = [Document(text=content, metadata={"source": input_path})]
except Exception as e:
return [Document(text=f"Error reading file as plain text: {e}")]
# Add the source path to metadata for traceability
for doc in documents:
doc.metadata["source"] = input_path
return documents
# --- Create the final LlamaIndex Tool from the completed function ---
read_and_parse_tool = FunctionTool.from_defaults(
fn=read_and_parse_content,
name="read_and_parse_tool",
description=(
"Use this tool to read and extract content from any given file or URL. "
"It handles PDF, DOCX, CSV, JSON, XLSX, and image files, as well as web pages, "
"YouTube videos (transcripts), and MP3 audio (transcripts). It also reads plain text "
"from files like .py or .txt. The input MUST be a single valid file path or a URL."
)
)
from typing import List
from llama_index.core import VectorStoreIndex, Document, Settings
from llama_index.core.tools import QueryEngineTool
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.query_engine import RetrieverQueryEngine
def create_rag_tool(documents: List[Document]) -> QueryEngineTool:
"""
Creates a RAG query engine tool from a list of documents using advanced components.
Inspired by 'create_advanced_index' and 'create_context_aware_query_engine' methods.
Args:
documents: A list of LlamaIndex Document objects from the read_and_parse_tool.
Returns:
A QueryEngineTool configured for the agent to use in the current task.
"""
if not documents:
return None
# --- 1. Node Parsing (from your 'create_advanced_index' logic) ---
# Using the exact parsers and logic you defined.
hierarchical_parser = HierarchicalNodeParser.from_defaults(chunk_sizes=[2048, 512, 128])
sentence_window_parser = SentenceWindowNodeParser.from_defaults(
window_size=3,
window_metadata_key="window",
original_text_metadata_key="original_text",
)
# Choose parser based on document count
if len(documents) > 5: # Heuristic for using hierarchical parser
nodes = hierarchical_parser.get_nodes_from_documents(documents)
else:
nodes = sentence_window_parser.get_nodes_from_documents(documents)
# --- 2. Index Creation ---
# Assumes Settings.embed_model is configured globally as in your snippet
index = VectorStoreIndex(nodes)
# --- 3. Query Engine Creation (from your 'create_context_aware_query_engine' logic) ---
# Using the exact reranker you specified
reranker = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2",
top_n=5
)
query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[reranker],
# Assumes Settings.llm is configured globally
)
# --- 4. Wrap the Query Engine in a Tool ---
rag_engine_tool = QueryEngineTool.from_defaults(
query_engine=query_engine,
name="rag_engine_tool",
description=(
"Use this tool to ask questions and query the content of documents that have already "
"been loaded. This is your primary way to find answers from the provided context. "
"The input is a natural language question about the documents' content."
)
)
return rag_engine_tool
import re
from llama_index.core.tools import FunctionTool
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
# 1. Create the base DuckDuckGo search tool from the official spec.
# This tool returns text summaries of search results, not just URLs.
base_duckduckgo_tool = DuckDuckGoSearchToolSpec().to_tool_list()[0]
# 2. Define a wrapper function to post-process the output.
def search_and_extract_top_url(query: str) -> str:
"""
Takes a search query, uses the base DuckDuckGo search tool to get results,
and then parses the output to extract and return only the first URL.
Args:
query: The natural language search query.
Returns:
A string containing the first URL found, or an error message if none is found.
"""
# Call the base tool to get the search results as text
search_results = base_duckduckgo_tool(query)
# Use a regular expression to find the first URL in the text output
# The \S+ pattern matches any sequence of non-whitespace characters
url_match = re.search(r"https?://\S+", str(search_results))
if url_match:
return url_match.group(0)
else:
return "No URL could be extracted from the search results."
# 3. Create the final, customized FunctionTool for the agent.
# This is the tool you will actually give to your agent.
extract_url_tool = FunctionTool.from_defaults(
fn=search_and_extract_top_url,
name="extract_url_tool",
description=(
"Use this tool ONLY when you need to find a relevant URL to answer a question but no "
"specific file, document, or URL has been provided. It takes a search query as input "
"and returns a single, relevant URL."
)
)
def execute_python_code(code: str) -> str:
try:
safe_globals = {
"__builtins__": {
"len": len, "str": str, "int": int, "float": float,
"list": list, "dict": dict, "sum": sum, "max": max, "min": min,
"round": round, "abs": abs, "sorted": sorted, "enumerate": enumerate,
"range": range, "zip": zip, "map": map, "filter": filter,
"any": any, "all": all, "type": type, "isinstance": isinstance,
"print": print, "open": open, "bool": bool, "set": set, "tuple": tuple
},
# Core Python modules
"math": __import__("math"),
"datetime": __import__("datetime"),
"re": __import__("re"),
"os": __import__("os"),
"sys": __import__("sys"),
"json": __import__("json"),
"csv": __import__("csv"),
"random": __import__("random"),
"itertools": __import__("itertools"),
"collections": __import__("collections"),
"functools": __import__("functools"),
# Data Science and Numerical Computing
"numpy": __import__("numpy"),
"np": __import__("numpy"),
"pandas": __import__("pandas"),
"pd": __import__("pandas"),
"scipy": __import__("scipy"),
# Visualization
"matplotlib": __import__("matplotlib"),
"plt": __import__("matplotlib.pyplot"),
"seaborn": __import__("seaborn"),
"sns": __import__("seaborn"),
"plotly": __import__("plotly"),
# Machine Learning
"sklearn": __import__("sklearn"),
"xgboost": __import__("xgboost"),
"lightgbm": __import__("lightgbm"),
# Statistics
"statistics": __import__("statistics"),
"statsmodels": __import__("statsmodels"),
# Image Processing
"PIL": __import__("PIL"),
"cv2": __import__("cv2"),
"skimage": __import__("skimage"),
# Network and Web
"requests": __import__("requests"),
"urllib": __import__("urllib"),
# Text Processing
"nltk": __import__("nltk"),
"spacy": __import__("spacy"),
# Time Series
"pytz": __import__("pytz"),
# Utilities
"tqdm": __import__("tqdm"),
"pickle": __import__("pickle"),
"gzip": __import__("gzip"),
"base64": __import__("base64"),
"hashlib": __import__("hashlib"),
"uuid": __import__("uuid"),
# Scientific Computing
"sympy": __import__("sympy"),
"networkx": __import__("networkx"),
# Database
"sqlite3": __import__("sqlite3"),
# Parallel Processing
"multiprocessing": __import__("multiprocessing"),
"threading": __import__("threading"),
"concurrent": __import__("concurrent"),
}
exec_locals = {}
exec(code, safe_globals, exec_locals)
if 'result' in exec_locals:
return str(exec_locals['result'])
else:
return "Code executed successfully"
except Exception as e:
return f"Code execution failed: {str(e)}"
code_execution_tool = FunctionTool.from_defaults(
fn=execute_python_code,
name="Python Code Execution",
description="Execute Python code safely for calculations and data processing"
)
import re
from llama_index.core.tools import FunctionTool
from llama_index.llms.huggingface import HuggingFaceLLM
# --- 1. Initialize a dedicated LLM for Code Generation ---
# It's good practice to use a model specifically fine-tuned for coding.
# This model is loaded only once for efficiency.
try:
code_llm = HuggingFaceLLM(
model_name="Qwen/Qwen2.5-Coder-7B",
tokenizer_name="Qwen/Qwen2.5-Coder-7B",
device_map="auto",
model_kwargs={"torch_dtype": "auto"},
# Set generation parameters for precise, non-creative code output
generate_kwargs={"temperature": 0.0, "do_sample": False}
)
except Exception as e:
print(f"Error initializing code generation model: {e}")
print("Code generation tool will not be available.")
code_llm = None
def generate_python_code(query: str) -> str:
"""
Generates executable Python code based on a natural language query.
Args:
query: A detailed description of the desired functionality for the Python code.
Returns:
A string containing only the generated Python code, ready for execution.
"""
if not code_llm:
return "Error: Code generation model is not available."
# --- 2. Create a precise prompt for the code model ---
# This prompt explicitly asks for only code, no explanations.
prompt = f"""
Your task is to generate ONLY the Python code for the following request.
Do not include any explanations, introductory text, or markdown formatting like '```python'.
The output must be a single, clean block of Python code.
Request: "{query}"
Python Code:
"""
# --- 3. Generate the response and post-process it ---
response = code_llm.complete(prompt)
raw_code = str(response)
# --- 4. Clean the output to ensure it's pure code ---
# Models often wrap code in markdown fences, this removes them.
code_match = re.search(r"```(?:python)?\n(.*)```", raw_code, re.DOTALL)
if code_match:
# Extract the code from within the markdown block
return code_match.group(1).strip()
else:
# If no markdown, assume the model followed instructions and return the text directly
return raw_code.strip()
# --- 5. Create the LlamaIndex Tool from the function ---
generate_code_tool = FunctionTool.from_defaults(
fn=generate_python_code,
name="generate_python_code_tool",
description=(
"Use this tool to generate executable Python code based on a natural language description of a task. "
"The input should be a clear and specific request for what the code should do (e.g., 'a function to "
"calculate the nth Fibonacci number'). The tool returns a string containing only the Python code."
)
)
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent...")
# Vérification du token HuggingFace
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required")
# Agent coordinateur principal qui utilise les agents spécialisés comme tools
self.coordinator = ReActAgent(
name="GAIACoordinator",
description="Main GAIA coordinator that uses specialized capabilities as intelligent tools",
system_prompt="""
You are the main GAIA coordinator using ReAct reasoning methodology.
You have access to THREE specialist tools:
**1. analysis_tool** - Advanced multimodal document analysis specialist
- Use for: PDF, Word, CSV, image file analysis
- When to use: Questions with file attachments, document analysis, data extraction
**2. research_tool** - Intelligent research specialist with automatic routing
- Use for: External knowledge, current events, scientific papers
- When to use: Questions requiring external knowledge, factual verification, current information
**3. code_tool** - Advanced computational specialist using ReAct reasoning
- Use for: Mathematical calculations, data processing, logical operations
- Capabilities: Generates and executes Python, handles complex computations, step-by-step problem solving
- When to use: Precise calculations, data manipulation, mathematical problem solving
**4. code_execution_tool** - Use only to execute .py file
CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format : NO explanations, NO additional text, ONLY the precise answer
""",
llm=proj_llm,
tools=[analysis_tool, research_tool, code_tool, code_execution_tool],
max_steps=10,
verbose = True,
callback_manager=callback_manager,
)
async def format_gaia_answer(self, raw_response: str, original_question: str) -> str:
"""
Post-process the agent response to extract the exact GAIA format answer
"""
format_prompt = f"""Extract the exact answer from the response below. Follow GAIA formatting rules strictly.
Examples:
Question: "How many research papers were published by the university between 2010 and 2020?"
Response: "Based on my analysis of the data, I found that the university published 156 research papers between 2010 and 2020."
Answer: 156
Question: "What is the last name of the software engineer mentioned in the report?"
Response: "After reviewing the document, the software engineer mentioned is Dr. Martinez who developed the system."
Answer: Martinez
Question: "List the programming languages from this job description, alphabetized:"
Response: "The job description mentions several programming languages including Python, Java, C++, and JavaScript. When alphabetized, these are: C++, Java, JavaScript, Python"
Answer: C++, Java, JavaScript, Python
Question: "Give only the first name of the developer who created the framework."
Response: "The framework was created by Sarah Johnson, a senior developer at the company."
Answer: Sarah
Question: "Give the ISO country code as your answer."
Response: "The country in question is France, which has the ISO code FRA."
Answer: FRA
Question: "Provide your response in standard notation."
Response: "The calculated value is 314 million, which in standard notation is 3.14e+8"
Answer: 3.14e+8
Now extract the exact answer:
Question: {original_question}
Response: {raw_response}
Answer:"""
try:
formatting_response = proj_llm.complete(format_prompt)
answer = str(formatting_response).strip()
# Extract just the answer after "Answer:"
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
except Exception as e:
print(f"Error in formatting: {e}")
return self._extract_fallback_answer(raw_response)
def download_gaia_file(self, task_id: str, api_url: str = "https://agents-course-unit4-scoring.hf.space") -> str:
"""Download file associated with task_id"""
try:
response = requests.get(f"{api_url}/files/{task_id}", timeout=30)
response.raise_for_status()
# Save file locally
filename = f"task_{task_id}_file"
with open(filename, 'wb') as f:
f.write(response.content)
return filename
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
return None
async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
question = question_data.get("Question", "")
task_id = question_data.get("task_id", "")
# Try to download file
try:
file_path = self.download_gaia_file(task_id)
except Exception as e:
print(f"Failed to download file for task {task_id}: {e}")
file_path = None
context_prompt = f"""
GAIA Task ID: {task_id}
Question: {question}
{'File downloaded: ' + file_path if file_path else 'No additional files referenced'}
Additionnal instructions to system prompt :
1. If a file is available, use the analysis_tool (except for .py files).
2. If a link is in the question, use the research_tool.
"""
try:
ctx = Context(self.coordinator)
# Use streaming to see step-by-step reasoning
print("=== AGENT REASONING STEPS ===")
handler = self.coordinator.run(ctx=ctx, user_msg=context_prompt)
full_response = ""
async for event in handler.stream_events():
if isinstance(event, AgentStream):
print(event.delta, end="", flush=True)
full_response += event.delta
# Get the final response
raw_response = await handler
print("\n=== END REASONING ===")
# Post-process to extract exact GAIA format
formatted_answer = await self.format_gaia_answer(str(raw_response), question)
print(f"Formatted answer: {formatted_answer}")
return formatted_answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
return error_msg |