Spaces:
Running
on
Zero
Running
on
Zero
""" | |
PetBull-7B-VL demo – CPU-only, 16 GB-friendly | |
-------------------------------------------- | |
• Base model : Qwen/Qwen2.5-VL-7B-Instruct | |
• LoRA adapter: ColdSlim/PetBull-7B (master branch) | |
This script: | |
✓ loads in bfloat16 (saves ~25 % RAM vs FP16) | |
✓ streams weights to avoid peak memory spikes | |
✓ off-loads large tensors to disk when RAM is tight | |
""" | |
import os, torch, gradio as gr | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForVision2Seq | |
from peft import PeftModel | |
# --------------------------------------------------------------------- | |
# 0 Env tweaks for Hugging Face Accelerate | |
# --------------------------------------------------------------------- | |
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true" # safer streaming | |
# --------------------------------------------------------------------- | |
# 1 Config | |
# --------------------------------------------------------------------- | |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct" | |
ADAPTER_REPO = "ColdSlim/PetBull-7B" | |
ADAPTER_REV = "master" # your model repo branch | |
OFFLOAD_DIR = "offload" # folder on disk for big tensors | |
device = "cpu" # force CPU | |
dtype = torch.bfloat16 # lighter than FP16 on modern CPUs | |
# --------------------------------------------------------------------- | |
# 2 Load processor (tiny) | |
# --------------------------------------------------------------------- | |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True) | |
# --------------------------------------------------------------------- | |
# 3 Load base model with memory-savvy flags | |
# --------------------------------------------------------------------- | |
base = AutoModelForVision2Seq.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=dtype, | |
low_cpu_mem_usage=True, # stream shards | |
device_map={"": "cpu"}, # everything on CPU | |
offload_folder=OFFLOAD_DIR, # mmap big tensors to disk | |
trust_remote_code=True | |
) | |
# --------------------------------------------------------------------- | |
# 4 Attach LoRA | |
# --------------------------------------------------------------------- | |
model = PeftModel.from_pretrained( | |
base, | |
ADAPTER_REPO, | |
revision=ADAPTER_REV, | |
device_map={"": "cpu"} | |
).eval() | |
# --------------------------------------------------------------------- | |
# 5 Inference helper | |
# --------------------------------------------------------------------- | |
def generate_answer( | |
image: Image.Image | None, | |
question: str, | |
temperature: float = 0.7, | |
top_p: float = 0.95, | |
max_tokens: int = 256, # keep small for RAM headroom | |
) -> str: | |
if image is None: | |
image = Image.new("RGB", (224, 224), color="white") | |
inputs = processor(text=[question], images=[image], return_tensors="pt") | |
with torch.no_grad(): | |
output_ids = model.generate( | |
**inputs, max_new_tokens=max_tokens, | |
temperature=temperature, top_p=top_p | |
) | |
return processor.batch_decode(output_ids, skip_special_tokens=True)[0] | |
# --------------------------------------------------------------------- | |
# 6 Gradio UI | |
# --------------------------------------------------------------------- | |
with gr.Blocks(title="PetBull-7B-VL (CPU)") as demo: | |
gr.Markdown( | |
"## 🐾 PetBull-7B-VL – Ask a Vet\n" | |
"Upload a photo and/or type a question." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
img_in = gr.Image(type="pil", label="Pet photo (optional)") | |
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…") | |
ask = gr.Button("Ask PetBull") | |
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature") | |
topp = gr.Slider(0.1, 1.0, 0.95, label="Top-p") | |
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens") | |
with gr.Column(): | |
answer = gr.Textbox(lines=12, label="Assistant", interactive=False) | |
ask.click(generate_answer, | |
inputs=[img_in, txt_in, temp, topp, max_tok], | |
outputs=answer) | |
demo.queue().launch() | |