Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,102 +1,107 @@
|
|
1 |
"""
|
2 |
-
PetBull-7B-VL demo
|
3 |
-
|
4 |
|
5 |
• Base model : Qwen/Qwen2.5-VL-7B-Instruct
|
6 |
-
• LoRA adapter: ColdSlim/PetBull-7B (
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
gradio>=4.33
|
13 |
-
|
14 |
-
Then (optionally) switch the Space hardware to **GPU (shared)** in
|
15 |
-
Settings → Hardware for much faster vision-language inference.
|
16 |
"""
|
17 |
|
18 |
-
import torch, gradio as gr
|
19 |
from PIL import Image
|
20 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
21 |
from peft import PeftModel
|
22 |
-
from transformers import BitsAndBytesConfig
|
23 |
|
24 |
# ---------------------------------------------------------------------
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
26 |
# ---------------------------------------------------------------------
|
27 |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
28 |
-
ADAPTER_REPO = "ColdSlim/PetBull-7B"
|
29 |
-
ADAPTER_REV = "master"
|
|
|
30 |
|
31 |
-
device = "
|
32 |
-
dtype = torch.
|
33 |
|
|
|
|
|
|
|
34 |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# ---------------------------------------------------------------------
|
49 |
-
#
|
50 |
# ---------------------------------------------------------------------
|
51 |
-
def generate_answer(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
prompt format required by Qwen-VL by inserting a blank white image.
|
59 |
-
"""
|
60 |
if image is None:
|
61 |
image = Image.new("RGB", (224, 224), color="white")
|
62 |
|
63 |
-
inputs = processor(text=[question],
|
64 |
-
images=[image],
|
65 |
-
return_tensors="pt").to(device)
|
66 |
-
|
67 |
with torch.no_grad():
|
68 |
-
output_ids = model.generate(
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
return processor.batch_decode(output_ids,
|
73 |
-
skip_special_tokens=True)[0]
|
74 |
|
75 |
# ---------------------------------------------------------------------
|
76 |
-
#
|
77 |
# ---------------------------------------------------------------------
|
78 |
-
with gr.Blocks(title="PetBull-7B-VL
|
79 |
gr.Markdown(
|
80 |
-
""
|
81 |
-
|
82 |
-
Upload a photo of your pet **and/or** ask a question.
|
83 |
-
The model will analyse the image (if provided) and give tailored advice.
|
84 |
-
"""
|
85 |
)
|
86 |
|
87 |
with gr.Row():
|
88 |
-
with gr.Column(
|
89 |
-
img_in
|
90 |
-
txt_in
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
with gr.Column(
|
96 |
-
answer
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
|
102 |
demo.queue().launch()
|
|
|
1 |
"""
|
2 |
+
PetBull-7B-VL demo – CPU-only, 16 GB-friendly
|
3 |
+
--------------------------------------------
|
4 |
|
5 |
• Base model : Qwen/Qwen2.5-VL-7B-Instruct
|
6 |
+
• LoRA adapter: ColdSlim/PetBull-7B (master branch)
|
7 |
|
8 |
+
This script:
|
9 |
+
✓ loads in bfloat16 (saves ~25 % RAM vs FP16)
|
10 |
+
✓ streams weights to avoid peak memory spikes
|
11 |
+
✓ off-loads large tensors to disk when RAM is tight
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
|
14 |
+
import os, torch, gradio as gr
|
15 |
from PIL import Image
|
16 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
17 |
from peft import PeftModel
|
|
|
18 |
|
19 |
# ---------------------------------------------------------------------
|
20 |
+
# 0 Env tweaks for Hugging Face Accelerate
|
21 |
+
# ---------------------------------------------------------------------
|
22 |
+
os.environ["ACCELERATE_USE_SLOW_RETRIEVAL"] = "true" # safer streaming
|
23 |
+
|
24 |
+
# ---------------------------------------------------------------------
|
25 |
+
# 1 Config
|
26 |
# ---------------------------------------------------------------------
|
27 |
BASE_MODEL = "Qwen/Qwen2.5-VL-7B-Instruct"
|
28 |
+
ADAPTER_REPO = "ColdSlim/PetBull-7B"
|
29 |
+
ADAPTER_REV = "master" # your model repo branch
|
30 |
+
OFFLOAD_DIR = "offload" # folder on disk for big tensors
|
31 |
|
32 |
+
device = "cpu" # force CPU
|
33 |
+
dtype = torch.bfloat16 # lighter than FP16 on modern CPUs
|
34 |
|
35 |
+
# ---------------------------------------------------------------------
|
36 |
+
# 2 Load processor (tiny)
|
37 |
+
# ---------------------------------------------------------------------
|
38 |
processor = AutoProcessor.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
39 |
|
40 |
+
# ---------------------------------------------------------------------
|
41 |
+
# 3 Load base model with memory-savvy flags
|
42 |
+
# ---------------------------------------------------------------------
|
43 |
+
base = AutoModelForVision2Seq.from_pretrained(
|
44 |
+
BASE_MODEL,
|
45 |
+
torch_dtype=dtype,
|
46 |
+
low_cpu_mem_usage=True, # stream shards
|
47 |
+
device_map={"": "cpu"}, # everything on CPU
|
48 |
+
offload_folder=OFFLOAD_DIR, # mmap big tensors to disk
|
49 |
+
trust_remote_code=True
|
50 |
)
|
51 |
|
52 |
+
# ---------------------------------------------------------------------
|
53 |
+
# 4 Attach LoRA
|
54 |
+
# ---------------------------------------------------------------------
|
55 |
+
model = PeftModel.from_pretrained(
|
56 |
+
base,
|
57 |
+
ADAPTER_REPO,
|
58 |
+
revision=ADAPTER_REV,
|
59 |
+
device_map={"": "cpu"}
|
60 |
+
).eval()
|
61 |
|
62 |
# ---------------------------------------------------------------------
|
63 |
+
# 5 Inference helper
|
64 |
# ---------------------------------------------------------------------
|
65 |
+
def generate_answer(
|
66 |
+
image: Image.Image | None,
|
67 |
+
question: str,
|
68 |
+
temperature: float = 0.7,
|
69 |
+
top_p: float = 0.95,
|
70 |
+
max_tokens: int = 256, # keep small for RAM headroom
|
71 |
+
) -> str:
|
|
|
|
|
72 |
if image is None:
|
73 |
image = Image.new("RGB", (224, 224), color="white")
|
74 |
|
75 |
+
inputs = processor(text=[question], images=[image], return_tensors="pt")
|
|
|
|
|
|
|
76 |
with torch.no_grad():
|
77 |
+
output_ids = model.generate(
|
78 |
+
**inputs, max_new_tokens=max_tokens,
|
79 |
+
temperature=temperature, top_p=top_p
|
80 |
+
)
|
81 |
+
return processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
|
|
82 |
|
83 |
# ---------------------------------------------------------------------
|
84 |
+
# 6 Gradio UI
|
85 |
# ---------------------------------------------------------------------
|
86 |
+
with gr.Blocks(title="PetBull-7B-VL (CPU)") as demo:
|
87 |
gr.Markdown(
|
88 |
+
"## 🐾 PetBull-7B-VL – Ask a Vet\n"
|
89 |
+
"Upload a photo and/or type a question."
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
img_in = gr.Image(type="pil", label="Pet photo (optional)")
|
95 |
+
txt_in = gr.Textbox(lines=3, placeholder="Describe the issue…")
|
96 |
+
ask = gr.Button("Ask PetBull")
|
97 |
+
temp = gr.Slider(0.1, 1.5, 0.7, label="Temperature")
|
98 |
+
topp = gr.Slider(0.1, 1.0, 0.95, label="Top-p")
|
99 |
+
max_tok = gr.Slider(32, 512, 256, step=8, label="Max tokens")
|
100 |
+
with gr.Column():
|
101 |
+
answer = gr.Textbox(lines=12, label="Assistant", interactive=False)
|
102 |
+
|
103 |
+
ask.click(generate_answer,
|
104 |
+
inputs=[img_in, txt_in, temp, topp, max_tok],
|
105 |
+
outputs=answer)
|
106 |
|
107 |
demo.queue().launch()
|