Chintan-Shah's picture
Update app.py
b3fe912 verified
import torch
import torch.nn as nn
import os
from peft import PeftModel
from PIL import Image
import gradio as gr
import librosa
import nltk
import re
from transformers import PreTrainedModel
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import CLIPProcessor, CLIPModel
from transformers import WhisperProcessor, WhisperForConditionalGeneration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "microsoft/Phi-3.5-mini-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load the model and processor
clipmodel = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clipprocessor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
nltk.download('punkt')
nltk.download('punkt_tab')
def remove_punctuation(text):
newtext = ''.join([char for char in text if char.isalnum() or char.isspace()])
newtext = ' '.join(newtext.split())
return newtext
def preprocess_text(text):
text_no_punct = remove_punctuation(text)
return text_no_punct
# Load Whisper model and processor
whisper_model_name = "openai/whisper-small"
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name)
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
def transcribe_speech(audiopath):
# Load and preprocess the audio
speech, rate = librosa.load(audiopath, sr=16000)
audio_input = whisper_processor(speech, return_tensors="pt", sampling_rate=16000)
# print("audio_input:", audio_input)
# Generate transcription
with torch.no_grad():
generated_ids = whisper_model.generate(audio_input["input_features"])
# Decode the transcription
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription
class ProjectionBlock(nn.Module):
def __init__(self, input_dim_CLIP, input_dim_phi2):
super().__init__()
self.pre_norm = nn.LayerNorm(input_dim_CLIP)
self.proj = nn.Sequential(
nn.Linear(input_dim_CLIP, input_dim_phi2),
nn.GELU(),
nn.Linear(input_dim_phi2, input_dim_phi2)
)
def forward(self, x):
x = self.pre_norm(x)
return self.proj(x)
# Modify the MultimodalPhiModel class to work with HuggingFace Trainer
class MultimodalPhiModel(PreTrainedModel):
def gradient_checkpointing_enable(self, **kwargs):
self.phi_model.gradient_checkpointing_enable(**kwargs)
def gradient_checkpointing_disable(self):
self.phi_model.gradient_checkpointing_disable()
def __init__(self, phi_model, tokenizer, projection):
super().__init__(phi_model.config)
self.phi_model = phi_model
self.image_projection = projection
self.tokenizer = tokenizer
# self.device = device
self.base_phi_model = None
@classmethod
def from_pretrained(self, pretrained_model_name_or_path, *model_args, debug=False, **kwargs):
model_name = "microsoft/Phi-3.5-mini-instruct"
base_phi_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# phi_path = os.path.join(pretrained_model_name_or_path, "phi_model")
phi_path = pretrained_model_name_or_path
# Save the base model
model = PeftModel.from_pretrained(base_phi_model, phi_path)
phi_model = model.merge_and_unload()
# # Load the base Phi-3 model
# phi_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
input_dim = 512
output_dim = 3072
# Load the projector weights
# projector_path = os.path.join(pretrained_model_name_or_path, "projection_layer", "pytorch_model.bin")
projector_path = os.path.join(pretrained_model_name_or_path, "image_projector.pth")
if os.path.exists(projector_path):
projector_state_dict = torch.load(projector_path, map_location=phi_model.device)
projector = ProjectionBlock(input_dim, output_dim)
# Try to load the state dict, ignoring mismatched keys
projector.load_state_dict(projector_state_dict, strict=False)
print(f"Loaded projector with input_dim={input_dim}, output_dim={output_dim}")
else:
print(f"Projector weights not found at {projector_path}. Initializing with default dimensions.")
input_dim = 512 # Default CLIP embedding size
output_dim = phi_model.config.hidden_size
projector = ProjectionBlock(input_dim, output_dim)
# Create and return the Phi3WithProjector instance
model = self(phi_model, tokenizer, projector)
model.base_phi_model = base_phi_model
return model
def save_pretrained(self, save_directory):
# Load the Phi-3.5 model
self.phi_model.save_pretrained(save_directory)
# model_name = "microsoft/Phi-3.5-mini-instruct"
# base_phi_model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.bfloat16,
# trust_remote_code=True,
# )
# # Save the base model
# model = PeftModel.from_pretrained(base_phi_model, self.phi_model)
# model = model.merge_and_unload()
# model.save_pretrained(save_directory)
# Save the projector weights
projector_path = os.path.join(save_directory, "image_projector.pth")
torch.save(self.image_projection.state_dict(), projector_path)
# Save the config
self.config.save_pretrained(save_directory)
def encode(self, image_features):
image_projections = self.image_projection(image_features)
return image_projections
def forward(self, start_input_ids, end_input_ids, image_features, attention_mask, labels):
# print("tokenizer bos_token_id", self.tokenizer.bos_token_id, "tokenizer eos_token", self.tokenizer.eos_token,
# "tokenizer pad_token_id", self.tokenizer.pad_token_id, "tokenizer sep_token_id", self.tokenizer.sep_token_id,
# "tokenizer cls_token_id", self.tokenizer.cls_token_id, "tokenizer mask_token_id", self.tokenizer.mask_token_id,
# "tokenizer unk_token_id", self.tokenizer.unk_token_id)
device = next(self.parameters()).device
start_embeds = self.phi_model.get_input_embeddings()(start_input_ids.to(device))
end_embeds = self.phi_model.get_input_embeddings()(end_input_ids.to(device))
# print("start_embeds shape:", start_embeds.shape, "image_embeddings shape:", image_embeddings.shape, "end_embeds shape:", end_embeds.shape)
# print("start_embeds dtype:", start_embeds.dtype, "image_embeddings dtype:", image_embeddings.dtype, "end_embeds dtype:", end_embeds.dtype)
if image_features is not None:
# Encode image features
image_embeddings = self.encode(image_features.to(device)).bfloat16()
input_embeds = torch.cat([start_embeds, image_embeddings, end_embeds], dim=1)
else:
input_embeds = torch.cat([start_embeds, end_embeds], dim=1)
# print("Input Embeds shape:", input_embeds.shape, "attention_mask shape:", attention_mask.shape, "labels shape:", labels.shape)
# print("input_embeds dtype:", input_embeds.dtype, "attention_mask dtype:", attention_mask.dtype)
# Forward pass through the language model
outputs = self.phi_model(inputs_embeds=input_embeds.to(device),
attention_mask=attention_mask.to(device),
labels=labels,
return_dict=True)
return outputs
def getImageArray(image_path):
image = Image.open(image_path)
return image
def getAudioArray(audio_path):
speech, rate = librosa.load(audio_path, sr=16000)
return speech
# Start text before putting image embedding
start_text = "<|system|> \n You are an assistant good at understanding the context.<|end|> \n <|user|> \n"
# Prepare text input for causal language modeling
end_text = "\n Describe the objects and their relationship in the given context.<|end|> \n <|assistant|> \n"
words = nltk.word_tokenize(start_text) + nltk.word_tokenize(end_text)
input_words = list(set(words))
# print("Input words:",input_words)
def getInputs(image_path, question, answer=""):
image_features = None
num_image_tokens = 0
if image_path is not None:
# print("type of image:", type(image_path))
# print("image path:", image_path)
image = clipprocessor(images=Image.open(image_path), return_tensors="pt")
# Generate the embedding
image_features = clipmodel.get_image_features(**image)
# Generate the embedding
# image_features = get_clip_embeddings(image)
image_features = torch.stack([image_features])
num_image_tokens = image_features.shape[1]
# Start text before putting image embedding
start_text = f"<|system|>\nYou are an assistant good at understanding the context.<|end|>\n<|user|>\n "
# Prepare text input for causal language modeling
end_text = f" .\n Describe the objects and their relationship from the context. <|end|>\n<|assistant|>\n {answer}"
# Tokenize the full texts
start_tokens = tokenizer(start_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
end_tokens = tokenizer(end_text, padding=True, truncation=True, max_length=512, return_tensors="pt")
# print(f"start_encodings shape: {start_encodings['input_ids'].shape}, end_encodings shape: {end_encodings['input_ids'].shape}")
start_input_ids = start_tokens['input_ids']
start_attention_mask = start_tokens['attention_mask']
end_input_ids = end_tokens['input_ids']
end_attention_mask = end_tokens['attention_mask']
# print("start_input_ids type:", type(start_input_ids), "image_tokens type:", type(image_tokens))
# print(f"start_input_ids shape: {start_input_ids.shape}, image_tokens shape: {image_tokens.shape}, end_input_ids shape: {end_input_ids.shape}")
# input_ids = torch.cat([start_input_ids,image_tokens,end_input_ids], dim=1)
if image_path is not None:
attention_mask = torch.cat([start_attention_mask, torch.ones((1, num_image_tokens), dtype=torch.long), end_attention_mask], dim=1)
else:
attention_mask = torch.cat([start_attention_mask, end_attention_mask], dim=1)
return start_input_ids, end_input_ids, image_features, attention_mask
model_location = "./MM_FT_C1_V2"
# print("Model location:", model_location)
model = MultimodalPhiModel.from_pretrained(model_location).to(device)
model_name = "microsoft/Phi-3.5-mini-instruct"
base_phi_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).to(device)
def getStringAfter(output, start_str):
if start_str in output:
answer = output.split(start_str)[1]
else:
answer = output
answer = preprocess_text(answer)
return answer
def getAnswerPart(output):
output_words = nltk.word_tokenize(output)
filtered_words = [word for word in output_words if word.lower() not in [w.lower() for w in input_words]]
return ' '.join(filtered_words)
def generateOutput(image_path, audio_path, context_text, question, max_length=3):
answerPart = ""
speech_text = ""
if image_path is not None:
for i in range(max_length):
start_tokens, end_tokens, image_features, attention_mask = getInputs(image_path, question, answer=answerPart)
# print("image_features dtype:", image_features.dtype)
output = model(start_tokens, end_tokens, image_features, attention_mask, labels=None)
tokens = output.logits.argmax(dim=-1)
output = tokenizer.decode(
tokens[0],
skip_special_tokens=True
)
# answerPart = getStringAfter(output, "<|assistant|>")
answerPart = getAnswerPart(output)
print("Answerpart:", answerPart)
if audio_path is not None:
speech_text = transcribe_speech(audio_path)
print("Speech Text:", speech_text)
if (question is None) or (question == ""):
question = " Describe the objects and their relationships in 1 sentence."
input_text = (
"<|system|>\n Please understand the context "
"and answer the question in 1 or 2 summarized sentences.\n"
f"<|end|>\n<|user|>\n<|context|> {answerPart} \n {speech_text} \n {context_text} "
f"\n<|question|>: {question} \n<|end|>\n<|assistant|>\n"
)
print("input_text:", input_text)
tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")
start_tokens = tokens['input_ids'].to(device)
# start_tokens = tokenizer(input_text, padding=True, truncation=True, max_length=1024, return_tensors="pt")['input_ids'].to(device)
attention_mask = tokens['attention_mask'].to(device)
# base_phi_model.generate(start_tokens, max_length=2, do_sample=False, pad_token_id=tokenizer.pad_token_id)
output_text = tokenizer.decode(
base_phi_model.generate(start_tokens, attention_mask=attention_mask, max_length=1024, do_sample=False, pad_token_id=tokenizer.pad_token_id)[0],
skip_special_tokens=True
)
output_text = getStringAfter(output_text, question).strip()
return output_text
title = "Created Fine Tuned MultiModal model"
description = "Test the fine tuned multimodal model created using clip, phi3.5 mini instruct, whisper models"
demo = gr.Blocks()
def process_inputs(image, audio_source, audio_file, audio_mic, context_text, question):
if audio_source == "Microphone":
speech = audio_mic
elif audio_source == "Audio File":
speech = audio_file
else:
speech = None
# image_features = get_clip_embeddings(image) if image else None
answer = generateOutput(image, speech, context_text, question)
return answer
with demo:
gr.Markdown(f"# {title}")
gr.Markdown(f" {description}")
with gr.Row():
with gr.Column(scale=1, min_width=300):
image_input = gr.Image(type="filepath", label="Upload Image")
with gr.Column(scale=2, min_width=300):
question = gr.Textbox(label="Question")
with gr.Row():
audio_source = gr.Radio(choices=["Microphone", "Audio File"], label="Select Audio Source")
audio_file = gr.Audio(sources="upload", type="filepath", visible=False)
audio_mic = gr.Audio(sources="microphone", type="filepath", visible=False)
context_text = gr.Textbox(label="Context Text")
output_text = gr.Textbox(label="Output")
def update_audio_input(source):
if source == "Microphone":
return gr.update(visible=True), gr.update(visible=False)
elif source == "Audio File":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
audio_source.change(fn=update_audio_input, inputs=audio_source, outputs=[audio_mic, audio_file])
submit_button = gr.Button("Submit")
submit_button.click(fn=process_inputs, inputs=[image_input, audio_source, audio_file, audio_mic, context_text, question], outputs=output_text)
demo.launch(debug=True)